• 제목/요약/키워드: Dyad Flow

검색결과 2건 처리시간 0.013초

Comparative evaluation of the bond strength of self-adhering and bulk-fill flowable composites to MTA Plus, Dycal, Biodentine, and TheraCal: an in vitro study

  • Raina, Aakrati;Sawhny, Asheesh;Paul, Saurav;Nandamuri, Sridevi
    • Restorative Dentistry and Endodontics
    • /
    • 제45권1호
    • /
    • pp.10.1-10.8
    • /
    • 2020
  • Objectives: This study aimed to compare the shear bond strength (SBS) of a self-adhering flowable composite (Dyad Flow) and a bulk-fill flowable composite (Smart Dentin Replacement [SDR]) to several pulp-capping materials, including MTA Plus, Dycal, Biodentine, and TheraCal. Materials and Methods: Eighty acrylic blocks with 2-mm-deep central holes that were 4 mm in diameter were prepared and divided into 2 groups (n = 40 each) according to the composite used (Dyad Flow or SDR). They were further divided into 4 sub-groups (n = 10 each) according to the pulp-capping agent used. SBS was tested using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed using 2-way analysis of variance. A p value of < 0.05 was considered to indicate statistical significance. Results: A statistically significant difference (p = 0.040) was found between Dyad Flow and SDR in terms of bond strength to MTA Plus, Dycal, Biodentine, and TheraCal. Conclusions: Among the 8 sub-groups, the combination of TheraCal and SDR exhibited the highest SBS.

Composition of Human Breast Milk Microbiota and Its Role in Children's Health

  • Notarbartolo, Veronica;Giuffre, Mario;Montante, Claudio;Corsello, Giovanni;Carta, Maurizio
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제25권3호
    • /
    • pp.194-210
    • /
    • 2022
  • Human milk contains a number of nutritional and bioactive molecules including microorganisms that constitute the so-called "Human Milk Microbiota (HMM)". Recent studies have shown that not only bacterial but also viral, fungal, and archaeal components are present in the HMM. Previous research has established, a "core" microbiome, consisting of Firmicutes (i.e., Streptococcus, Staphylococcus), Proteobacteria (i.e., Serratia, Pseudomonas, Ralstonia, Sphingomonas, Bradyrhizobium), and Actinobacteria (i.e., Propionibacterium, Corynebacterium). This review aims to summarize the main characteristics of HMM and the role it plays in shaping a child's health. We reviewed the most recent literature on the topic (2019-2021), using the PubMed database. The main sources of HMM origin were identified as the retrograde flow and the entero-mammary pathway. Several factors can influence its composition, such as maternal body mass index and diet, use of antibiotics, time and type of delivery, and mode of breastfeeding. The COVID-19 pandemic, by altering the mother-infant dyad and modifying many of our previous habits, has emerged as a new risk factor for the modification of HMM. HMM is an important contributor to gastrointestinal colonization in children and therefore, it is fundamental to avoid any form of perturbation in the HMM that can alter the microbial equilibrium, especially in the first 100 days of life. Microbial dysbiosis can be a trigger point for the development of necrotizing enterocolitis, especially in preterm infants, and for onset of chronic diseases, such as asthma and obesity, later in life.