• Title/Summary/Keyword: Dust-collection

Search Result 187, Processing Time 0.027 seconds

A Study on the Development of Dust Collection System for Hull Repair (선체 표면 공사시 발생하는 분진 수거 장치 개발에 관한 연구)

  • Yoa, S.J.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.31-38
    • /
    • 2004
  • The main purpose of this study is to investigate the characteristics of hybrid collection system combined with centrifugal force of cyclone and filtration of bag filter in one unit system. The experiment and numerical simulation are executed for the analysis of collection efficiency and pressure drop characteristics of hybrid system in comparison with those of a general fabric bag filter with the various experimental parameters such as inlet velocity(filtration velocity), dust concentration and dust type, etc.. In present system, dust particles tangentially coming into the system body are controlled by the centrifugal force effect, and the next collection is made out by the filtration mechanism in the fabric filter media. Therefore, the effective first collection causes the decrease of dust loading on the fabric filter, and it presents quite a lower pressure drop of fabric filter than that of a general fabric filter. At the inlet velocity, $21{\sim}27m/sec$ and inlet concentration(fly ash) $300mg/m^3$, pressure drops through the filter media of hybrid system are shown lower as $10{\sim}22mmH_2O$ comparing to those($17{\sim}33mmH_2O$) of a general fabric bag filter.

  • PDF

Relationship between the Outer Vortex and the Collection Efficiency with respect to Temperatures in the Cyclone Dust Collector (사이클론 집진장치의 내부온도에 따른 외부 소용돌이와 집진효율의 관계)

  • Hyun, Daegeun;Chang, Hyuksang
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • This study compares the results of collection efficiency of difference gas temperature in cyclone dust collector. The previous researcher's experiment results were used to confirm the reliability of CFD(Computational Fluid Dynamics) model. Based on this verified CFD model, we extended the analysis on the cyclone dust collectors. In CFD study, we used RNG k-epsilon model for analysis of turbulence flow, fluid is air, the velocity at inlet is 10 m/s, the temperature of air is $20^{\circ}C$, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $600^{\circ}C$ and $1000^{\circ}C$. As the temperature decreases, the average velocity of outer vortex and collection efficiency is increased, showed the highest collection efficiency at $20^{\circ}C$. It can be inferred smooth flow in cyclone dust collector is difficult because air viscosity increases as temperature increases. The power required at $1000^{\circ}C$ is almost 18 times greater than that of $20^{\circ}C$ to get the similar collection efficiency.

Development of Cyclone Conveying System for Transporting Chopped Round Bale Roughage and Separating Dust (흙먼지 분리기 용이한 원형베일 세절 조사료의 사이클론 이송장치 개발)

  • Ha, Yu-Shin;Kwon, Jin-Kyung;Park, Kyung-Kyoo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • This study developed the cyclone conveying system using roughage cutter for the round bale reported in the previous papers. Performance tests were conducted whether it can easily separate dust from roughage such as rice straws and it can transport roughages from cutter to TMR mixer. In addition, the airflow patterns in the cyclone conveying system were investigated using CFD code (FLUENT 6.2) for various velocities of dust collection fan. The cyclone conveying system was designed based on dried rice straws with a diameter of 1,340 mm, a cylinder length of 1,220 mm, a cone length of 850 mm and the current velocity of the dust collection fan was 15~20 m/s. It was found that transporting of roughage from cutter to TMR mixer and the separation of dust were satisfactory, and the dust removal rate of rice straws was around 31.9%. CFD analysis showed that, at the blowing fan velocity of 11.6 m/s, the airflow velocity inside the dust collector increased as velocity of the dust collection fan increased, but the airflow patterns inside the dust collector were all much the same.

Effects of Two Stage Vortex Finder on the Particulate Collection Efficiency of Cyclone Separator (2단 선회류 약화기가 원심력집진기의 집진효율에 미치는 영향)

  • 강순국;유경선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.633-640
    • /
    • 2000
  • The effects of structure modification of the vortex finder on the collection efficiency and pressure drop have been investigated. The pressure drop in a cyclone having the two stage vortex finder is higher than that in a conventional cyclone and increases proportionally with the increase of square of gas inlet velocity in both cases. The pressure drop of both conventional cyclone of friction resistance at the boundary layer. The collection efficiency of fine dust has been enhanced by addition of vortex finder in a conventional cyclone and gas inlet velocity showing maximum dust removal efficiency increase to 17 m/s(1.7 times of saltation velocity). Optimum size of two stage vortex finder has been induced to 13 cm I.D$\times$2.6cm Length from the results of overall dust collection efficiency. Previous models were tested for the simulation of collection efficiency of cyclone having two stage vortex finder and the Dietz model predict the similar value with experimental results of the present study.

  • PDF

A Study on the Collection Characteristics of a Moving Electrode Electrostatic Precipitator - II. Effect of Wave Form of Pulse Energization and Dust Concentration - (이동 전극형 전기집진기의 집진특성에 관한 연구 - II. 펄스 하전 파형 및 분진농도의 영향 -)

  • Kim Yong-Jin;Ha Byung-Kil;Jeong Sang-Hyun;Hong Won-Seok;Yoo Joo-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2004
  • This study investigates the effect of the wave form of pulse energization and dust concentration on the collection characteristics of a moving electrode electrostatic precipitator (MEEP). Under the same specific corona power, the collection efficiency of the MEEP for the lower dust concentration ($2g/m^3$) becomes higher than that for the higher concentration ($10g/m^3$). Both the collection efficiency and specific corona power increase with increasing pulse period for the same value of applied voltage. The collection efficiency of MEEP is higher than that of the conventional fixed plate electrode electrostatic precipitator.

Dust Collection Efficiency, Inhalation Pressure, and CO2 Concentration in Health Masks (보건용 마스크의 분진포집효율, 흡기저항 및 CO2 농도)

  • Han, Don-Hee;Kim, Il Soon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: To identify the degree of physical burden, a determination was undertaken of dust collection efficiency, inhalation pressure, and CO2 concentration related to health masks certified by the Ministry of Food and Drug Safety (MFDS). Methods: Twenty health masks were purchased on the market. Dust collection efficiency and inhalation pressure were determined in the same manner as in MFDS certification testing, respectively using TSI Model 8130 (TSI, U.S.) and ART Plus (Korea). CO2 concentrations for 20 subjects using a CO2 analyzer (G100, G150, Geotechnical Instrument Ltd., UK) were measured with a similar method as a total inward leakage test. In addition to CO2 levels, dead space volumes in the masks was determined for predicting concentrations of CO2 in inhalation air. Results: Most of the dust collection efficiencies found for the 20 masks were far higher than the standard. Four KF94s met KF99 and four KF80s even met KF94. Most inhalation pressures were also much lower than the standard, with many almost one-half of the standard. The mean and standard deviation of CO2 concentration in the mask were 2.9±0.44%. Considering dead volume, the prediction for CO2 concentration in the inhalation air was 4,395±1,266 ppm. Conclusions: For healthy men and women, the dust collection efficiency and inhalation pressure of health masks were not at a level that would affect their health. Although CO2 levels in the inhalation air were predicted not to affect health, research on the physiological effects of health masks on Koreans is needed for more precise research.

A Study on Performance Improvement of Light and Low-Noisy Standing Grinder with Vacuum Dust Collection Using a Cyclone Separator (사이클론을 활용한 경량.저소음 진공집진 스탠딩 그라인더의 성능개선에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4732-4737
    • /
    • 2011
  • A standing grinder with a vacuum dust collection, which works grinding a surface and collecting dust occurred simultaneously, is needed to clean the surface before painting, or to remove a weld bead burr in the industrial field. In recent it trends to be compact and potable with high grinding and dust collection power, and low noise. As increasing these grinding and dust collection power, the noise and weight of standing grinder occurs an important problem. To solve these problem, an efficient cyclone separator was designed and developed by Ansys-CFX analysis and experiments. A weight of the developed grinder part was 5.9kg, which can be easily handled on standing by workers. and a noise level of the developed prototype was measured 69.9 dB(A).

Evaluation of Collection Efficiency of Electrostatic Precipitator for Removing Limestone Slurry Particles (석회석 슬러리 입자 제거를 위한 전기집진기 포집효율 평가)

  • Lee, Gi-Hyuk;Kim, Moon-Won;Yu, Tae-U;Yook, Se-Jin
    • Particle and aerosol research
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2019
  • Recently, there has been much research on the effect of fine dust on human body with increasing interest in the fine dust. Thermal power plant, which is considered as one of the main sources of fine dust, is reported to be responsible for 14% of the total amount of domestic fine dust in the Republic of Korea. Therefore, dust collecting devices in the thermal power plant need to be improved. In this study, the electrostatic precipitator (ESP) was considered to substitute for a mist eliminator used in flue gas desulfurization facility. By considering real situation in the flue gas desulfurization facility, the collection efficiency of the ESP was evaluated by using the sprayed limestone slurry particles. The collection efficiency of the ESP was higher than that of the mist eliminator, showing the possibility of replacing the mist eliminator with the ESP in flue gas desulfurization facility.

Aanalyze the Fluid Inside the Ceramic Filtration Dust Collection System (세라믹 필터 집진기의 유동 해석)

  • Jang, Sung-Cheol;Choi, Dong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • This study aimed to analyze the fluid inside the ceramic filtration dust collection system which was assumed to be a stationary 3-dimensional turbulence. The fluid dynamics data necessary for performance curves were obtained based on the analysis results. The governing equations used to compute the velocity distribution and pressure inside the catalyst converter were expressed with continuity and momentum equations. Furthermore, the ${\kappa}-{\varepsilon}$ turbulence model, already validated by the industry(coal factory, high temperature dust collector) was used for the study. Of a total of three computational models employed, Model-1 served as the basis for CFD analysis which took measurements in increments of 70mm.

Characterization of Fine Dust Collection Using a Filter Ventilation (환기장치와 필터를 활용한 미세먼지 제거특성 조사)

  • Jeon, Tae-Yeong;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • In this study, we examined the removal characteristics of suspended particulate matters which are one of carcinogens to cause lung cancer. The fine dust capture by a pilot scale filtration system depends on several important variables such as humidity, initial fine dust injection volume, and flow rate. The average concentration of particulate matters in the test chamber decreased, but the ultimate collection efficiency did not change during the filtration under high humidity, compared to those of using ambient conditions The initial injection amount of fine dust did not influence the particle capturing efficiency. When the flow rate reduced from 0.6 m/s to 0.3 m/s, the dust collection time increased approximately 1.4 times. Among all variables tested, the flow rate showed the most significant effect on the removal efficiency of fine particulate matter.