• Title/Summary/Keyword: Dust adsorption

Search Result 56, Processing Time 0.025 seconds

Adsorption Performance Evaluation of Powdery Polymer Cement Hardened Substances with Gelite (겔라이트를 혼입한 분말형 폴리머 시멘트 경화체의 흡착성능 평가)

  • Lee, Jeon-Ho;Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.164-165
    • /
    • 2022
  • In order to solve problems such as acceleration of resource use and environmental pollution, experiments were conducted with the aim of producing indoor finishing materials that can adsorb fine dust and carbon dioxide using gelite and polymer, which are porous materials. Based on the previous experiment, gelite was substituted at each level in a matrix having a polymer S738P substitution rate of 12.5%, and the results are as follows. As the substitution rate of gelite increased, the amount of fine dust and carbon dioxide adsorption increased, which is believed to be due to physical adsorption due to the high porosity of gelite. However, further experiments are needed as the overall adsorption amount is not high due to the filling inside the matrix due to the polymer.

  • PDF

Properties of Adsorption Matrix for Improving Indoor Air Quality using Cork (코르크를 활용한 실내공기질 개선용 흡착 경화체의 특성)

  • Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.56-57
    • /
    • 2019
  • Recently, the risk of fine dust is emerging in Korea. According to the OECD report, the incidence of hospitalization and mortality from lung disease is increased, and the incidence of lung cancer and mortality from ischemic heart disease with prolonged exposure are increased. In addition, indoor air quality has become an important factor affecting the human body as indoor life has increased due to the Industrial Revolution. Air pollutants that cause indoor air deterioration typically include particulate dusts as described above, formaldehyde and VOCs released in gaseous form from adhesive wood products used in building materials and furniture. May cause breathing problems. In this study, we analyzed the properties of adsorption matrix for improving indoor air quality using cork.

  • PDF

Prioritization of Species Selection Criteria for Urban Fine Dust Reduction Planting (도시 미세먼지 저감 식재를 위한 수종 선정 기준의 우선순위 도출)

  • Cho, Dong-Gil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.472-480
    • /
    • 2019
  • Selection of the plant material for planting to reduce fine dust should comprehensively consider the visual characteristics, such as the shape and texture of the plant leaves and form of bark, which affect the adsorption function of the plant. However, previous studies on reduction of fine dust through plants have focused on the absorption function rather than the adsorption function of plants and on foliage plants, which are indoor plants, rather than the outdoor plants. In particular, the criterion for selection of fine dust reduction species is not specific, so research on the selection criteria for plant materials for fine dust reduction in urban areas is needed. The purpose of this study is to identify the priorities of eight indicators that affect the fine dust reduction by using the fuzzy multi-criteria decision-making model (MCDM) and establish the tree selection criteria for the urban planting to reduce fine dust. For the purpose, we conducted a questionnaire survey of those who majored in fine dust-related academic fields and those with experience of researching fine dust. A result of the survey showed that the area of leaf and the tree species received the highest score as the factors that affect the fine dust reduction. They were followed by the surface roughness of leaves, tree height, growth rate, complexity of leaves, edge shape of leaves, and bark feature in that order. When selecting the species that have leaves with the coarse surface, it is better to select the trees with wooly, glossy, and waxy layers on the leaves. When considering the shape of the leaves, it is better to select the two-type or three-type leaves and palm-shaped leaves than the single-type leaves and to select the serrated leaves than the smooth edged leaves to increase the surface area for adsorbing fine dust in the air on the surface of the leaves. When considering the characteristics of the bark, it is better to select trees that have cork layers or show or are likely to show the bark loosening or cracks than to select those with lenticel or patterned barks. This study is significant in that it presents the priorities of the selection criteria of plant material based on the visual characteristics that affect the adsorption of fine dust for the planning of planting to reduce fine dust in the urban area. The results of this study can be used as basic data for the selection of trees for plantation planning in the urban area.

Setting time properties of cement matrix according to photosynthetic bacterial dilution ratio (광합성 세균 희석 비율에 따른 시멘트 경화체의 응결 특성)

  • Pyeon, Su-Jeong;Kim, Dae-Yeon;Lim, Jeong-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.89-90
    • /
    • 2018
  • In recent years, harmful substances and fine dust in the air are caused by respiratory and cardiovascular diseases through various mechanisms when they are introduced into the human body through respiration, thereby exacerbating human health and causing cancer by prolonged exposure do. In order to prevent such fine dust from being introduced into the room and to improve indoor air quality, improvement of air quality has attracted attention. Among indoor air pollutants, fine dust and CO2 are pollutants that are directly affected by indoor number and activity. The purpose of this study is to evaluate the basic performance of cement matrix using photosynthetic bacteria as a basic study of fine dust and CO2 adsorption type matrix to suppress indoor air pollution and improve air quality.

  • PDF

Preparation of Spherical Granules of Dolomite Kiln Dust as Gas Adsorbent

  • Choi, Young-Hoon;Huh, Jae-Hoon;Lee, Shin-Haeng;Han, Choon;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • It is highlighted that increasing the adsorbent surface area on volumetric basis is very important in providing an easy access for gas molecules. Fine particles around $3{\mu}m$ of soft-burned dolomite kiln dust (SB-DKD) were hydrated to wet slurry samples by ball mill process and then placed in a chamber to use spray dryer method. Spherical granules with particle size distribution of $50{\sim}60{\mu}m$ were prepared under the experimental condition with or without addition of a pore-forming agent. The relationship between bead size of the pore-forming agent and size of SB-DKD particles is the most significant factor in preparation of spherical granules with a high porosity. Whereas addition of smaller beads than SB-DKD resulted in almost no change in the surface porosity of spherical granules, addition of larger beads than SB-DKD contributed to obtaining of the particles with both 15 times larger average pore volume and 1 order of magnitude larger porosity. It is considered that spherical granules with improved $N_2$ gas adsorption ability may also be utilized for other atmospheric gas adsorption.

Adsorption Properties of Permeable Block according to the Replacement Ratio of TiO2 (TiO2를 치환율에 따른 투수블록의 흡착 특성)

  • Lee, Hye-Eun;Yoo, Jae-Gyun;Lee, Sang Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.74-75
    • /
    • 2021
  • In the recent 2017 annual average fine dust concentration (PM2.5) statistics released by the Organization for Economic Cooperation and Development (OECD), Korea has a high concentration of 25.14㎍/m3, which is about twice the average of 12.5㎍/m3 in OECD countries. Fine dust (PM2.5) is the main source of secondary pollutant production by the reaction of primary pollutants emitted from automobiles and thermal power plants, mainly composed of sulfates, nitrates, and organic carbon. The permeable block is an eco-friendly product that prevents rainwater from collecting on the surface of the road because it does not penetrate the groundwater properly, and is widely constructed on sidewalks or parking lots to recharge groundwater in case of rain. In addition, the pavement of the permeable block is a fundamental solution to reduce pollution by preventing rainwater from flowing into the stream, and it also has the advantage of easy replacement as well as low replacement costs. Therefore, this study was a basic experiment to produce permeable blocks mixed with TiO2 and diatomite to improve indoor air quality, and intended to analyze the flexural strength and compressive strength of permeable blocks mixed with TiO2.

  • PDF

Properties of Cement Matrix Using Vegetable Activated Carbon (식물성 활성탄을 활용한 시멘트 경화체의 특성)

  • Lee, Jae-Hoon;Park, Chae-Wool;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.138-139
    • /
    • 2020
  • With the rapid progress of industrialization, indoor air quality is a very important factor for modern people who spend most of their day indoors. The recent issue of fine dust and radon on the portal site's popularity search shows that interest in indoor air quality has increased. Fine dust causes respiratory diseases, and radon causes severe lung cancer. The new material was tested using plant activated carbon, palm activated carbon and bamboo activated carbon. Both palm activated carbon and bamboo activated carbon are porous materials and generate smooth physical adsorption. As a result of the experiment, both the activated carbon tends to gradually decrease in strength and fluidity as the replacement ratio increases. The reason for this is that both activated carbons have the property of absorbing moisture, so it is judged that the strength is lowered by absorbing moisture necessary for curing. In the case of fluidity, it is judged that the fluidity is reduced by absorbing the moisture required for the flow. In the future, if the problem of the color of the finished cured body is compensated, it will be possible to manufacture a functional finishing board to replace the existing interior finishing material.

  • PDF

Intelligent AI-based Fine Dust Reduction Control System for Thermal Power Generation (지능형 AI기반의 미세먼지 저감 제어 시스템)

  • Lim, Sang-teak;Baek, Soon-chang;Song, Yong-jun;Baek, Yeong-tae;Choi, Cha-bong;Song, Seung-in
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.53-56
    • /
    • 2019
  • 본 논문에서는 화력을 이용하는 대형 파워 플랜트 설비의 미세먼지 발생량을 저감시키고 능동적으로 제어 할 수 있는 효율적인 시스템을 제안한다. 이 시스템은 기존의 고정형으로 설계된 집진기 방식의 고정부하량 한계점과 극복하고 초미세먼지 PM2.5, 미세먼지 PM10의 발생량에 따라 IoT센서 감지에 의해 지능형 알고리즘으로 효율적으로 저감 제어 처리량을 극대화하고, 미세먼지 발생량을 최소화한다. 또한 이 시스템의 차별성은 기존의 집진기에서 잡혀지지 않는 초미세먼지를 새로운 형태의 물질인 FAA(Fine-dust Adsorption Agent)를 통해 연료 연소 시 발생되는 초미세먼지 미세입자 자체를 크게 만들어 기존 설비 집진기 필터에 포집되게 하는 혁신적인 방식이다. 이번 연구를 통해 350도~1000도 열원에서 작용할 수 있는 화학물질 FAA 용액(Agent)을 개발 하였으며 지능형 AI 분사장치를 통해 연료에 첨가되어 연소 시 미세먼지를 20배~50배까지 볼륨을 확대시켜 기존 집진필터에 포집될 수 있게 동작된다. 이때, 기존 설계된 집진기의 한계(부하)용량에 상관없이 미세먼지 발생량을 상황인식 반응형 알고리즘(AI제어) 통해 분사량을 능동적으로 조절하여 미세먼지 발생량을 저감하는 진보적 혁신성을 지닌다.

  • PDF

Strength Properties of Fine Dust Adsorption Matrix using Photocatalyst TiO2 Rutile Replacement Ratio (광촉매 TiO2 루타일 타입 치환율에 따른 미세먼지 흡착형 경화체의 강도 특성)

  • Kyoung, In-Soo;Lee, Won-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.174-175
    • /
    • 2019
  • Recently, due to air pollution caused by fine dust, it is considered as a social problem. Increasing fine dust has intensified air pollution, causing many diseases and damages. This year, Seoul, South Korea, reached a severe level of fine dust pollution worldwide. The Ministry of Environment has strengthened the environmental standard for fine dust (PM2.5) from $50{\mu}g/m^3$ to $35{\mu}g/m^3$ since March 2018. When fine dust enters the human body, it causes bronchial or skin elongation such as respiratory allergies, irritable pneumonia, asthma and atopy. In this study, $TiO_2$ rutile with photocatalytic activity was used, and materials prepared by rutile sulfuric acid method were used. The photocatalytic activity rate is 95% or more and the density is $4.1g/cm^3$. The matrix was based on cement, and the substitution rate of $TiO_2$ was 0, 5, 10, 15, 20 (%). The test item is flexural strength and compressive strength.

  • PDF

Simultaneous Control of Dust and Gases Using a Double Centrifugal Device (이중 원심력 집진장치를 이용한 분진-가스 동시 처리)

  • Jang, Jung-Hee;Lee, Ju-Heon;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.336-345
    • /
    • 2008
  • A large volume of work has been attempted to improve the separation efficiency of cyclone by establishing new design and optimum operation. An auxiliary device called Post Cyclone (PoC) has been introduced and tested in an earlier work (In order to reduce the emission of fine dust from the reverse flow cyclones). This work applies the PoC to remove the dust and gaseous elements using a centrifugal effect remained in the discharging flow over the cyclone. As a result of the experiment, the efficiency was found best at the high gas concentration and low inlet velocity.