• Title/Summary/Keyword: Duration of runoff

Search Result 201, Processing Time 0.044 seconds

Development of Regional Regression Model for Estimating Flow Duration Curves in Ungauged Basins (미계측 유역의 유황곡선 산정을 위한 지역회귀모형의 개발)

  • Lee, Tae Hee;Lee, Min Ho;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.427-437
    • /
    • 2016
  • The objective of this study is to develop the regional regression models based on the physiographical and climatological characteristics for estimating flow duration curve (FDC) in ungauged bsisns. To this end, the lower sections with duration from 185 to 355 days of FDCs were constructed from the 16 gauged streamflow data, which were fitted to the two-parameter logarithmic type regression equation. Then, the parameters of the equation were regionalized using the basin characteristics such as basin area, basin slope, drainage density, mean annual precipitation, mean annual streamflow, runoff curve number in order that the proposed regression model can be used for ungauged basin. From the comparison of the estimated by the regional regression model with the observed ones, the model with the combination of basin area, runoff curve number, mean annual precipitation showed the best performance.

Derivation of the Instantaneous Unit Hydrograph and Estimation of the Direct Runoff by Using the Geomorphologic Parameters (지상인자에 의한 순간단위도 유도와 유출량 예측)

  • 천만복;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.87-101
    • /
    • 1990
  • The purpose of this study is to estimate the flood discharge and runoff volume at a stream by using geomorphologic parameters obtained from the topographic maps following the law of stream classification and ordering by Horton and Strahier. The present model is modified from Cheng' s model which derives the geomorphologic instantaneous unit hydrograph. The present model uses the results of Laplace transformation and convolution intergral of probability density function of the travel time at each state. The stream flow velocity parameters are determined as a function of the rainfall intensity, and the effective rainfall is calculated by the SCS method. The total direct runoff volume until the time to peak is estimated by assuming a triangular hydrograph. The model is used to estimate the time to peak, the flood discharge, and the direct runoff at Andong, Imha. Geomchon, and Sunsan basin in the Nakdong River system. The results of the model application are as follows : 1.For each basin, as the rainfall intensity doubles form 1 mm/h to 2 mm/h with the same rainfall duration of 1 hour, the hydrographs show that the runoff volume doubles while the duration of the base flow and the time to peak are the same. This aggrees with the theory of the unit hydrograph. 2.Comparisions of the model predicted and observed values show that small relative errors of 0.44-7.4% of the flood discharge, and 1 hour difference in time to peak except the Geomchon basin which shows 10.32% and 2 hours respectively. 3.When the rainfall intensity is small, the error of flood discharge estimated by using this model is relatively large. The reason of this might be because of introducing the flood velocity concept in the stream flow velocity. 4.Total direct runoff volume until the time to peak estimated by using this model has small relative error comparing with the observed data. 5.The sensitivity analysis of velocity parameters to flood discharge shows that the flood discharge is sensitive to the velocity coefficient while it is insensitive to the ratio of arrival time of moving portion to that of storage portion of a stream and to the ratio of arrival time of stream to that of overland flow.

  • PDF

Critical Duration of Design Rainfall for the Design of Storm Sewer in Seoul (우수관거 설계를 위한 계획강우의 임계지속기간 -서울 지역을 중심으로-)

  • 이재준;이정식;전병호;이종태
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.49-57
    • /
    • 1993
  • A hydrological method is performed to determine the critical duration of design rainfall for the design of storm sewer in Seoul. To seize the effect of the duration and the temporal distribution of the rainfall to the peak discharge of the storm sewer, the Huff's quartile method is used as a temporal pattern for the design rainfall of any durations (9 cases for 20-240 min.) with 10 years return period. The critical duration of design rainfall is determined as the duration which maximizes the peak discharge. This study is applied to 18 urban drainage systems in Seoul. The ILLUDAS model is applied to runoff analysis, and the result shows that the duration which maximizes peak discharge is 30, 60 minutes generally. The relation diagram between peak discharge for the critical duration and watershed area is prepared for the design of storm sewer.

  • PDF

Development of Runoff Hydrograph Model for the Derivation of Optimal Design Flood of Agricultural Hydraulic Structures(1) (농업수리구조물의 적정설계홍수량 유도를 위한 유출수문곡선모형의 개발(I))

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.34-47
    • /
    • 1995
  • It is experienced fact as a regular annual event that the structure to he designed on unreasonable flood for the agricultural structures including reservoirs have been brought not only loss of lives, but also enormous property damage. For the solution of this problem at issue, this study was conducted to develop an optimal runoff hydrograph model by comparison of the peak flows and time to peak between observed and simulated flows derived by linear time-invariant and linear time-variant models under the condition of having a short duration of heavy rainfall with uniform rainfall intensity at nine small watersheds which are within the range of 55.9 to 140.7 square kilometers in area in Han, Geum, Nagdong and Yeongsan Rivers. The results obtained through this study can be summarized as follows. 1. Storage constants and Gamma function arguments were calculated within the range of 1.2 to 6.42 and of 1.28 to 8.05 respectively by the moment method as the parameters for the analysis of runoff hydrograph based on linear time-invariant model. 2. Parameters for both linear time-invariant and linear time-variant models were calibrated with nine gaged watershed data, using a trial and error method. The resulting parameters including Gamma function argument, N and storage constant, K for linear time-invariant model were related statistically to watershed characteristic variables such as area, slope, length of main stream and the centroid length of the basin. 3. Average relative errors of the simulated peak discharge of calibrated runoff hydrographs by using linear time-variant and linear time-invariant models were shown to be 0.75 and 5.42 percent respectively to the peak of observed runoff hydrographs. Correlation coefficients for the statistical analysis in the same condition were shown to be 0.999 and 0.978 with a high significance respectively. Therefore, it can be concluded that the accuracy of a linear time-variant model is approaching more closely to the observed runoff hydrograph than that of a linear time-invariant model in the applied watersheds. 4. Average relative errors of the time to peak of calibrated runoff hydrographs by using linear time-variant and linear time-invariant models were shown to be 16.44 and 19.89 percent respectively to the time to peak of observed runoff hydrographs. Correlation coefficients in the same condition were also shown to be 0.999 and 0.886 with a high significance respectively. 5. It can be seen that the shape of simulated hydrograph based on a linear time- variant model is getting closer to the observed runoff hydrograph than that of a linear time-invariant model in the applied watersheds. 6. Two different models were verified with different rainfall-runoff events from data for the calibration by relative error and correlation analysis. Consequently, it can be generally concluded that verification results for the peak discharge and time to peak of simulated runoff hydrographs were in good agreement with those of calibrated runoff hydrographs.

  • PDF

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

Simulation and validation of flash flood in the head-water catchments of the Geum river basin

  • Duong, Ngoc Tien;Kim, Jeong Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.138-138
    • /
    • 2021
  • Flash floods are one of the types of natural hazards which has severe consequences. Flash floods cause high mortality, about 5,000 deaths a year worldwide. Flash floods usually occur in mountainous areas in conditions where the soil is highly saturated and also when heavy rainfall happens in a short period of time. The magnitude of a flash flood depends on several natural and human factors, including: rainfall duration and intensity, antecedent soil moisture conditions, land cover, soil type, watershed characteristics, land use. Among these rainfall intensity and antecedent soil moisture, play the most important roles, respectively. Flash Flood Guidance is the amount of rainfall of a given duration over a small stream basin needed to create minor flooding (bank-full) conditions at the outlet of the stream basin. In this study, the Sejong University Rainfall-Runoff model (SURR model) was used to calculate soil moisture along with FFG in order to identify flash flood events for the Geum basin. The division of Geum river basin led to 177 head-water catchments, with an average of 38 km2. the soil moisture of head-water catchments is considered the same as sub-basin. The study has measured the threshold of flash flood generation by GIUH method. Finally, the flash flood events were used for verification of FFG. The results of the validation of seven past independent events of flash flood events are very satisfying.

  • PDF

Criteria for calculation of CSO volume and frequency using rainfall-runoff model (우수유출 모형을 이용한 합류식하수관로시스템의 월류량, 월류빈도 산정 기준 결정 연구)

  • Lee, Gunyoung;Na, Yongun;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.313-324
    • /
    • 2013
  • It is widely known that untreated Combined Sewer Overflows (CSOs) that directly discharged from receiving water have a negative impact. Recent concerns on the CSO problem have produced several large scale constructions of treatment facilities, but the facilities are normally designed under empirical design criteria. In this study, several criteria for defining CSOs (e.g. determination of effective rainfall, sampling time, minimum duration of data used for rainfall-runoff simulation and so on) were investigated. Then this study suggested a standard methodology for the CSO calculation and support formalized standard on the design criteria for CSO facilities. Criteria decided for an effective rainfall was over 0.5 mm of total rainfall depth and at least 4 hours should be exist between two different events. An Antecedent dry weather period prior to storm event to satisfy the effective rainfall criteria was over 3 days. Sampling time for the rainfall-runoff model simulation was suggested as 1 hour. A duration of long-term simulation CSO overflow and frequency calculation should be at least recent 10 year data. A Management plan for the CSOs should be established under a phase-in of the plan. That should reflect site-specific conditions of different catchments, and formalized criteria for defining CSOs should be used to examine the management plans.

Inundation Analysis of Agricultural Basin Considering Agricultural Drainage Hydrological Plan and Critical Rainfall Duration (농지배수 수문설계 기준과 임계지속기간을 고려한 농업 소유역 침수분석)

  • Kim, Kwihoon;Jun, Sang-Min;Kang, Moon Seong;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.25-32
    • /
    • 2023
  • KDS (Korean Design Standard) for agricultural drainage is a planning standard that helps determine the appropriate capacity and type of drainage facilities. The objective of this study was to analyze the inundation of the agricultural basin considering the current design standard and the critical rainfall duration. This study used the rainfall durations of 1-48 hour, and the time distribution method with the Chicago and the modified Huff model. For the runoff model, the NRCS (Natural Resources Conservation Service) unit hydrograph method was applied, and the inundation depth and duration were analyzed using area-elevation data. From the inundation analysis using the modified Huff method with different rainfall durations, 4 hours showed the largest peak discharge, and 11 hours showed the largest inundation depth. From the comparison analysis with the current method (Chicago method with a duration of 48 hours) and the modified Huff method applying critical rainfall duration, the current method showed less peak discharge and lower inundation depth compared to the modified Huff method. From the simulation of changing values of drainage rate, the duration of 11 hours showed larger inundation depth and duration compared to the duration of 4 hours. Accordingly, the modified Huff method with the critical rainfall duration would likely be a safer design than the current method. Also, a process of choosing a design hydrograph considering the inundation depth and duration is needed to apply the critical rainfall duration. This study is expected to be helpful for the theoretical basis of the agricultural drainage design standards.

Approximation Method of Environmental Flows based on Flow Duration Curves (유황곡선을 기반으로 한 환경유량의 개략산정법)

  • Kim, Joo-Cheol;Lee, Sang-Jin;Ko, Ick-Hwan;Woo, Dong-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.933-937
    • /
    • 2010
  • This study aimed at the introduction of desktop method for assessment of environmental flows developed by IWMI(International Water Management Institute) recently and its application to Geum river basin. This scheme simulated the influence on aquatic ecosystem caused by watershed development and in turn the decrease of water quantity keeping the river's own flow regime. It was found to be as very effective method although it had simple structure. Flow duration curves for different environmental classes at Sutong and Gongjoo sites were estimated according to the natural conditional scenario of Geum river basin and the results were relatively compared well with the previous studies. The behaviors of monthly average runoff time series of both sites showed the level of A class. The results of this study would provide the fundamental data to establish the future plans of monitoring or management for aquatic ecosystem of Geum river basin.

  • PDF

Empirical Equation for Pollutant Loads Delivery Ratio in Nakdong River TMDL Unit Watersheds (낙동강 오염총량관리 단위유역 유달율 경험공식)

  • Kim, Mun Sung;Shin, Hyun Suk;Park, Ju Hyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.580-588
    • /
    • 2009
  • In this study daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. Finally, multiple regression analysis is carried out to estimate empirical equations for pollutants delivery ratio. The results show that there is positive relation between the flow rates and delivery ratios, and the proposed empirical formulas for delivery ratio can predict well river pollutant loads.