• Title/Summary/Keyword: Durable press

Search Result 90, Processing Time 0.021 seconds

Strength Restoration of The DP Finished Cotton Fabric by Enzymatic Treatment (수지 가공 면직물의 강도 회복을 위한 효소처리 연구)

  • 전미선;김주혜;박명자
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.5
    • /
    • pp.737-742
    • /
    • 2004
  • The purpose of this study is restoration for tearing strength of the durable press (DP) finished 100% cotton fabric by enzymatic treatment. Dimethylol Dihydroxy Ethylene Urea (DMDHEU) was used as a DP finish chemical. Enzymes (cellulase, pectinase, protease, lipolase) were selected based on their specific reaction activities. Ideal application of the enzymes for this work was to remove cross-links created by DMDHEU on the surface of the fibers to offer migration property between microstructures of cellulose, yet cross-links that exist inside of the fibers are still remained to impart effect of wrinkle resistance. Physical characteristics (tearing strength, wrinkle recovery, FT-IR) of enzyme treated samples were measured and compared. It was found out that, in case of enzyme treatment, most of enzymes didn't have a great effect on tearing strength, but, in case of Protease, tearing strength increased at DMDHEU 2% treatment. As a result of an experiment on wrinkle recovery of the textiles treated with enzyme making density of DMDHEU different whenever respective experiment was made, it was discovered that density of DMDHEU increased as wrinkle recovery increased and, in the relation to enzyme treatment especially in Lipase enzyme treatment, the lesser density of DMDHEU, the more wrinkle recovery increased.

  • PDF

Effect of force during stumbling of the femur fracture with a different ce-mented total hip prosthesis

  • El Sallah, Zagane Mohammed;Ali, Benouis;Abderahmen, Sahli
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • Total hip prosthesis is used for the patients who have hip fracture and are unable to recover naturally. To de-sign highly durable prostheses one has to take into account the natural processes occurring in the bone. Finite element analysis is a computer based numerical analysis method which can be used to calculate the response of a model to a set of well-defined boundary conditions. In this paper, the static load analysis is based, by se-lecting the peak load during the stumbling activity. Two different implant materials have been selected to study appropriate material. The results showed the difference of maximum von Misses stress and detected the frac-ture of the femur shaft for different model (Charnley and Osteal) implant with the extended finite element method (XFEM), and after the results of the numerical simulation of XFEM for different was used in deter-mining the stress intensity factors (SIF) to identify the crack behavior implant materials for different crack length. It has been shown that the maximum stress intensity factors were observed in the model of Charnley.

MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge

  • Chen, Z.Q.;Wang, X.Y.;Ko, J.M.;Ni, Y.Q.;Spencer, B.F.;Yang, G.;Hu, J.H.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.293-304
    • /
    • 2004
  • The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. Several intensive wind-rain induced vibrations had been observed since its open to traffic in 1999. To investigate the possibility of using MR damping systems to reduce cable vibration, a series of field tests were conducted. Based on the promising research results, MR damping system was installed on the longest 156 stay cables of Dongting Lake Bridge in June 2002, making it the worlds first application of MR dampers on cable-stayed bridge to suppress the wind-rain induced cable vibration. As a visible and permanent aspect of the bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes field tests and the implementation of MR damping systems for cable vibration reduction. Three-years reliable service of this system proves its durability.

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

Durable Press Finish of Cotton Fabric Using Malic Acid as a Crosslinker

  • Kim, Byung-Hak;Jang, Jinho;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • It has been considered that malic acid, $\alpha$-hydroky succinic acid, could not form crosslinks in the cellulosic materials unless activated by other polycarboxylic acids such as butanetetracarboxylic acid or citric acid because there are only two carboxylic acids per molecule available fur the formation of one anhydride intermediate. However we found that the dicarboxylic malic acid with sodium hypophosphite catalyst without the addition of other crosslinkers was able to improve wrinkle resistance of cotton up to $294^{\circ}$(dry WRA) and $285^{\circ}$ (wet WRA), which is a measure of crosslinking level in cotton. $^1$H FT-NMR, FT-IR and GPC analysis indicated the in-situ formation of an trimeric $\alpha$, $\beta$-rnalic acid with a composition of 1:3 through the esterification between hydroxyl group and one of carboxylic groups in malic acid during curing. The crosslinking of cotton was attributed to the trimeric $\alpha$, $\beta$-malic acid, a tetracarboxylic acid, which can form two anhydride rings during curing. The influence of crosslinking conditions such as concentrations of malic acid and catalyst, pH of the formulation bath, and curing temperature were investigated in terms of imparted wrinkle resistance and whiteness. The addition of reactive polyurethane resin in the formulation slightly increased the mechanical strength retention of crosslinked fabric coupled with additional increase in wrinkle resistance.

  • PDF

Natural Dyeing of Chitosan Crossinked Cotton Fabrics (II) - Gallnut - (키토산 가교 처리된 면직물의 천연염색에 관한 연구(II) - 오배자를 중심으로 -)

  • Kwak, Mi-Jung;Kwon, Jung-Sook;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.377-384
    • /
    • 2008
  • For the purpose of standardization and practicability of natural dyeing, the mordanting and dyeing properties of gallnut was studied. In this study, the colorants of gallnut were extracted with boiling water. Chitosan crosslinked cotton fabrics were been dyed with aqueous extract of gallnut and their dyeabilities on the fabrics were studied. Additionally, the fastness to washing and light were also investigated. Cotton fabrics were treated with a crosslinking agent epichlorohydrin in the presence of chitosan to provide the cotton fabrics the dyeing properties of natural dye(gallnut) by the chemical linking of chitosan to the cellulose structure. The chitosan finishing and durable press finishing of the cotton fabrics carried out simultaneously in the mercerization bath. The dyeability(K/S), which was obtained by CCM observation, remarkably increased as the concentration of chitosan was high. Dye ability of gallnut showed higher toward chitosan treated cotton than controlled cotton fabric under condition at $60^{\circ}C$, for 20 min. The hue value indicated reddish yellow with increasing the crosslinked chitosan concentration. And the color fastness to washing and light was the almost the same.

The effect of attack of chloride and sulphate on ground granulated blast furnace slag concrete

  • Ashish, Deepankar K.;Singh, Bhupinder;Verma, Surender K.
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.107-121
    • /
    • 2016
  • This concrete is one of the most versatile construction material widely used for almost a century now. It was considered to be very durable material and required a little or no maintenance since long time. The assumption is very true, except when it is subjected to highly aggressive environments. The deterioration of concrete structures day by day due to aggressive environment is compelling engineers to assess the loss in advance so that proper preventive measure can be taken to achieve required durability to concrete structures. The compounds present in cement concrete are attacked by many salt solutions and acids. These chemicals are encountered by almost all concrete structures. The present study has been undertaken to investigate the effect of attack of chlorides and sulphates with varying severity on compressive strength of ground granulated blast furnace slag (GGBFS) concrete after immersion in salt solution for 28 days. The results indicate that the durability of GGBFS concrete increases with the increase in percentage replacement of cement by GGBFS for 20% and then gradually decreases with increases in percentage of GGBFS with cement (as in the study for 40% and 60%). Also there is increase in strength of GGBFS concrete with increase in age. Thus the durability of concrete improves when GGBFS is added as partial replacement of cement. In this study the strength of GGBFS concrete is less affected by chemicals as compared to conventional concrete when exposed to aggressive environment.

Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Rabia, Benferhat;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.257-278
    • /
    • 2017
  • A simple closed-form solution to calculate the interfacial shear and normal stresses of retrofitted concrete beam strengthened with thin composite plate under mechanical loads including the creep and shrinkage effect has been presented in this paper. In such plated beams, tensile forces develop in the bonded plate, and these have to be transferred to the original beam via interfacial shear and normal stresses. Consequently, debonding failure may occur at the plate ends due to a combination of high shear and normal interfacial stresses. These stresses between a beam and a soffit plate, within the linear elastic range, have been addressed by numerous analytical investigations. Surprisingly, none of these investigations has examined interfacial stresses while taking the creep and shrinkage effect into account. In the present theoretical analysis for the interfacial stresses between reinforced concrete beam and a thin composite plate bonded to its soffit, the influence of creep and shrinkage effect relative to the time of the casting, and the time of the loading of the beams is taken into account. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions.

A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams

  • Chedad, Abdebasset;Daouadji, Tahar Hassaine;Abderezak, Rabahi;Belkacem, Adim;Abbes, Boussad;Rabia, Benferhat;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.317-328
    • /
    • 2017
  • In this paper, an improved theoretical solution for interfacial stress analysis is presented for simply supported concrete beam bonded with a sandwich FGM plate. Interfacial stress analysis is presented for simply supported concrete beam bonded with a sandwich plate. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. A numerical parametric study was performed for different simulated cases to assess the effect of several parameters. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the FGM sandwich panel strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.

A critical review of slag and fly-ash based geopolymer concrete

  • Akcaoglu, Tulin;Cubukcuoglu, Beste;Awad, Ashraf
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.453-458
    • /
    • 2019
  • Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.