• Title/Summary/Keyword: Durability design

Search Result 1,335, Processing Time 0.031 seconds

Enhanced Durability Performance of Polymer Modified Cement Composites for Concrete Repair Under Combined Aging Conditions (복합열화 환경을 받는 콘크리트 시설물을 위한 보수용 폴리머 시멘트 복합체의 내구성능 향상에 관한 연구)

  • Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.27-34
    • /
    • 2005
  • The purpose of this study is to improve the durability performance of polymer modified cement composites for repair of concrete under combined aging conditions. The experimental procedure was divided into three parts. First, the replacement level of mineral admixtures in polymer modified cement composites were determined in an experimental study based on a Box Behnken design. Second, the flow value, compressive strength and chloride permeability test of sixteen types of mixtures were conducted. Test results show that the polymer modified cement composites were effected on the improvement of the compressive strength and permeability performance. Third, the effects on the replacement level of silica fume mixture was evaluated by the compressive strength, chloride permeability, chemical resistance and repeated freezing and thawing cycles test. They demonstrated that the polymer modified cement composites using mixture of silica fume, fly ash, and blast furnace slag improved the durability performance.

Full Scale Durability Test of Basic Trainer (기본 훈련기 실기체 내구성시험)

  • Joo, Young-Sik;Kim, Min-Sung;Park, Byung-Hoon;Shul, Chang-Won;Kim, Ho-Yeon;Jung, Jae-Kwon;Jeong, Byeong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • The general requirements to achieve the structural integrity of the airframe are described in the military specification, MIL-STD-1530A. One of these requirements is the durability and damage tolerance of the airframe, which should be shown through the analysis and test based on the related specifications. This paper introduces the full scale durability test to evaluate the structural safety and durability of the basic trainer, KT-1. The test was performed according to the procedure in the military specification. The flight by flight load spectrum was developed by KT-1 fatigue load criteria and used for the durability test. The durability test had been performed for 4 service lives and was completed successfully. Therefore, it was shown that KT-1 airframe satisfied the durability requirements.

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

Convergent Analysis through Durability by Thermal Stress at Drum Brake (드럼 브레이크에서의 열응력에 의한 내구성을 통한 융합적 분석)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.5
    • /
    • pp.139-144
    • /
    • 2020
  • In this study, a simulation analysis on the drum itself and the brake was examined. And the analysis results were obtained by investigating the thermal analysis results and the durability through structural analysis. Through the thermal stress and structural analyses on the lining under the force due to the brake cylinder, the drum inside under the force due to the expansion of the lining and the drum under the force due to the rotation of the axis, it was confirmed at which part the amounts of equivalent stress and deformation became large. If applied to the brake disc design by combining the results of this study, it is considered to be large utilization at increasing the prevention against the thermal deformation and its durability. The results of this study can be usefully applied to the durability design that can withstand the thermal stress in the drum brake. By applying the durability analysis at the seam of railroad track by season, this investigation result is seen to be favorable as the convergent research applied to the aesthetic design.

Examining and Refining the Code for Durability Design Criteria of Concrete Carbonation (개정 콘크리트 탄산화 내구성 설계기준의 적용상 문제점 분석)

  • Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.285-293
    • /
    • 2023
  • In this research, we embarked on a meticulous analysis of the challenges inherent in real-world scenarios relating to the durability design standards of engineered concrete structures and the assessment of carbonation durability in concrete guidelines. Our investigation brought to light substantial issues concerning constructability and quality assurance. The genesis of these problems is the exclusive application of prescribed strength to exterior walls, neglecting other elements to facilitate smoother licensing procedures. While this methodology aims to mitigate financial constraints in alignment with enhanced standards, it invariably invites complications. Furthermore, it is imperative to resolve the uncertainty surrounding durability evaluations by establishing a clear and definitive objective. Alongside this, actionable steps must be formulated to forestall the emergence of fissures between the floors of residential buildings, particularly apartment complexes. It is equally essential to tackle issues connected to application by devising a comprehensive management strategy for potential cracking during the phase of maintenance.

A Study on Mix Design of Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서의 조기강도 발현을 위한 콘크리트 포장 배합 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • PURPOSES : This paper focuses on strength development according to the mix design with cement type and mineral admixture from laboratory and field tests in cool weather. METHODS : Two methods evaluated the mix design of concrete pavement in cool weather. Firstly, laboratory tests including slump, air contents, setting time, strength, maturity, and freezing-thawing test were conducted. Three alternatives were selected based on the tests. Secondly, a field test was conducted and the optimum mix design in cool weather was suggested. RESULTS : It is an evident from the laboratory test that a mix with type III cement showed better performance than the one with type I cement. There was a delay in strength development of a mix with mineral admixture compared to mix design without any mineral admixture. In the field test, type III cement+flyash 20% mix design proved the best performance. CONCLUSIONS : For concrete pavement in cool weather, mix design using type III cement could overcome the strength delay due to mineral admixture. Moreover, it is possible to make sure of durability of pavement. Therefore, strength and durability problems due to cool weather would decrease.

Generative Artificial Intelligence for Structural Design of Tall Buildings

  • Wenjie Liao;Xinzheng Lu;Yifan Fei
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.203-208
    • /
    • 2023
  • The implementation of artificial intelligence (AI) design for tall building structures is an essential solution for addressing critical challenges in the current structural design industry. Generative AI technology is a crucial technical aid because it can acquire knowledge of design principles from multiple sources, such as architectural and structural design data, empirical knowledge, and mechanical principles. This paper presents a set of AI design techniques for building structures based on two types of generative AI: generative adversarial networks and graph neural networks. Specifically, these techniques effectively master the design of vertical and horizontal component layouts as well as the cross-sectional size of components in reinforced concrete shear walls and frame structures of tall buildings. Consequently, these approaches enable the development of high-quality and high-efficiency AI designs for building structures.

HVAC System For Highriser Residential Bilding (기획특집 - 초고층 설비설계사례)

  • Noh, Suk-Nam
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.5
    • /
    • pp.32-36
    • /
    • 2009
  • This project located in IFEZ(Incheon Free Economic Zone) is the first central heating and cooling type for high-rise residential building in korea. The design was performed as the joint venture between Cosentini from U.S.A and wooowon, and our design concept was to save energy. LEED application from USGBC is going on in progress for the first residential building in korea. Careful attention was paid from schematic design for not a durability of structural and architectural, but also durability and safety of M.E.P.

  • PDF

Evaluation of Durability and Long-term Design Tensile Strength of Flexible Geogrids (연성 지오그리드의 내구성 및 장기설계인장강도 평가)

  • 조삼덕;김진만;안주환;전한용;조성호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.21-38
    • /
    • 1999
  • Engineering properties of most polymers used in geosynthetics such as geogrid can be degraded by the chemical reaction (e.g., oxidization, ultraviolet rays, hydrolysis etc.), chemical and mechanical load, microorganism, and so on. In addition, polymer can be damaged by the compaction during construction, and the characteristic of tensile strength of polymer can be changed by the long-term creep effect. In this study, engineering properties of flexible geogrids which are manufactured by weaving/knitting the high-tenacity polymers such as polyester formed in a very open, grid-like configuration, coated with any one of a number of materials (e.g., PVC, latex, etc.), are investigated. Through the analysis of test results, the durability and the long-term design tensile strength of flexible geogrids are evaluated.

  • PDF