• Title/Summary/Keyword: Durability Life

Search Result 801, Processing Time 0.031 seconds

A Study on Durability Life Improvement of Blower for Military Armored Vehicle and Self-propelled Artillery (군용장갑차 및 자주포용 송풍기의 내구수명 향상에 대한 연구)

  • Park, Young Min;Kim, Byung Uk;Kim, Sung Hoon;Noh, Sang Wan
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.453-465
    • /
    • 2019
  • Purpose: A main purpose is to increase the operational rate and reduce operating maintenance costs by Improving the durability of Blower of Military Armored Vehicle and Self-propelled Artillery. As a result, it is expected to improve the service quality of customers. Methods: After analyzing the cause of the stop of the blower, the improvement plans were established and the effectiveness of each improvement plans were verified by testing. Results: Mechanical, electrical and environmental factors affecting brush wear were reviewed, but it was difficult to specify the cause, which necessitated a review of the application of the BLDC motor. Conclusion: After applying the BLDC motor to the blower, tests proved that the existing blower can be replaced. It is expected that this study will help improve the durability life of similar equipment that is applied with Brushed DC motors as well as blowers.

Long Life Design of SSD Test Gender by Reducing Ejecting Force (인출력 저감을 통한 SSD Test Gender의 장수명 설계)

  • Kim, Jae Kyung;Park, Hyung Suk;Lee, Ki Seok;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.139-144
    • /
    • 2020
  • Recently, the electronic equipment industry has become active due to the continuous increase in portable storage media with high-speed information communication, and in particular, the production of SSD(Solid State Drives) for miniaturization of mobile devices and high-speed information communication has increased rapidly. When the SSD is ejecting in the SSD test gender, the necessary ejecting force must be kept constant to have a lifespan applicable to the test device. When the ejecting force increased, it leads to wear of the link for ejecting, which causes a problem in that repeated durability decreases and the ejecting of the SSD becomes impossible. In this paper, the repeated durability test analysis according to the material and the reducing ejecting force design were performed to increase the life of the test gender for SSD inspection. The wear level of the pusher head and ejector was analyzed through repeated durability tests according to the material of the pusher head. The validity of the design was verified through the ejecting force test and repeated durability test of the Test gender, which was designed by carrying out the design to reduce the size and ejecting force of the test gender.

A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments (염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구)

  • Kim, Rak-Hyun;Roh, Seung-Jun;Tae, Sung-Ho
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

Full Scale Durability Test of Basic Trainer (기본 훈련기 실기체 내구성시험)

  • Joo, Young-Sik;Kim, Min-Sung;Park, Byung-Hoon;Shul, Chang-Won;Kim, Ho-Yeon;Jung, Jae-Kwon;Jeong, Byeong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • The general requirements to achieve the structural integrity of the airframe are described in the military specification, MIL-STD-1530A. One of these requirements is the durability and damage tolerance of the airframe, which should be shown through the analysis and test based on the related specifications. This paper introduces the full scale durability test to evaluate the structural safety and durability of the basic trainer, KT-1. The test was performed according to the procedure in the military specification. The flight by flight load spectrum was developed by KT-1 fatigue load criteria and used for the durability test. The durability test had been performed for 4 service lives and was completed successfully. Therefore, it was shown that KT-1 airframe satisfied the durability requirements.

Durability Analysis and Experiments of a Vehicle Component (차량 부품의 내구도 해석과 실험의 비교)

  • Park, Dong-Woon;Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2007
  • In design stage of vehicles, the application of virtual durability analysis techniques enables us to cut down the necessary time and cost to carry out various physical experiments. In this study, computer simulations of vehicle suspensions were carried out with DADS program including component flexibility, and the durability analysis of vehicle components was executed with MSC/Fatigue program using the load history obtained from vehicle dynamic simulation. Driving test of a vehicle was also carried out to obtain precise input data for the durability analysis, and the results of virtual durability analysis were compared to those of experiments.

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module (자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용)

  • 손성효;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

Durability and Stress Analysis On Automotive Lower Arm (자동차 로우어 암의 내구성 및 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.376-380
    • /
    • 2010
  • The capability of automotive suspension system depends on steering safety of knuckle and lower control arm. In this study, light weight is applied with lower arm by the material of aluminium alloy. Distributed stress, fatigue life and proper vibration are analyzed with multiple loads happened by automobile. The durability of lower arm can be verified by the result of structural analysis.

Consideration of the Frictional Force on the Crack Surface and Its Implications for Durability of Tires

  • Park, K.S.;Kim, T.W.;Jeong, H.Y.;Kim, S.N.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2159-2167
    • /
    • 2006
  • In order to find out a physical quantity which controls the fatigue life of a structure and to predict the fatigue life of tires, a finite element simulation methodology to use the cracking energy density (CED) and the virtual crack closure technique (VCCT) was proposed and applied to three different tires of a similar size. CED was calculated to predict the location of a crack initiation, and VCCT was used to obtain the strain energy release rate (SERR) at the tip of an initiated crack. Finite element simulations showed that SERR oscillated in the circumferential direction with its minimum occurring just before the contact zone and its maximum occurring just after the center of the contact zone, and SERR was affected significantly by the frictional force acting on the crack surface. In addition, a durability test was conducted to measure the fatigue life of the three tires. The comparison of SERR values with the test data revealed that the fatigue life increased as the amplitude of SERR decreased or as the R-ratio of SERR increased.