• Title/Summary/Keyword: Durability Life

Search Result 803, Processing Time 0.024 seconds

A Study on Track Drive Unit Test and Evaluation for Mini Excavators (소형 굴삭기의 주행구동유니트 시험평가에 관한 연구)

  • Lee, Gi-Chun;Lee, Young-Bum;Choi, Byung Oh
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.139-144
    • /
    • 2015
  • Track drive unit adopted in the small sized excavator generally have been used in the construction equipment under the 10 tons as the driving device with forwarding and reversing of excavator. It is required to study the accelerated life test applied by over torque and speed to test the durability life test reflected the many driving modes of small sized excavator and also need to equip the comprehensive performance and life test equipments to do the various performance tests. This study had analyzed the failure modes of the components, and calculated the equivalent loads investigated the used loads in the real field conditions and elicits the acceleration factor adopted in the inverse power model. Also, this study have considered the changes of the acceleration factor and the durability test time in the case of the rotary group and the bearing through analyzing the main failure modes. It was calculated the no failure test time about 2 samples and confidence level 90% and elicited the accelerated life time 720 hours.

Fatigue Cumulative Damage and Life Prediction of Freight Bogie using Rainflow Counting Method under Service Loading (운전하중하의 레인플로집계법을 이용한 화차 대차의 피로누적손상과 수명예측)

  • Jeon, Joo-Heon;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.114-119
    • /
    • 2004
  • Endbeam is an important structural member of freight bogie for the support of service loading. In general, more than 25 years' durability is necessary. However, endbeam occur fatigue fracture in dynamic stress concentration location because comparatively strength and stiffness are low. Therefore, structure analysis is performed to evaluate structural problem of endbeam and local strain range as durability analysis. The number of cycles is extracted concerning the bogie in operation by measurement dynamic stress time history on critical part which is crack initiation in actual fact. At this time rainflow cycle counting is used to consider change of stress for operating condition. Based on the fatigue life curves and the stress analysis, the fatigue life of the endbeam is predicted and compared with the experimentally determined fatigue life, resulting in a fairly good correlation.

  • PDF

Operating Method to Maximize Life Time of 5 kW High Temperature Polymer Exchange Membrane Fuel Cell Stack (5 kW 고온 고분자연료전지 스택 수명 극대화를 위한 운전 방법론)

  • KIM, JIHUN;KIM, MINJIN;SOHN, YOUNG-JUN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.144-154
    • /
    • 2016
  • HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) using PA (phosphoric acid) doped PBI (polybenzimidazole) membrane has been researched for extending the lifetime. However, the existing work on durability of HT-PEMFC focuses on identifying degradation causes of lab scale. The short life time of HT-PEMFC is still the problem for its commercialization. In this paper, an operating method to maximize life time of 5kW HT-PEMFC stack are proposed. The proposed method includes major steps such as minimization of OCV (Open Circuit Voltage) exposure, control of the proper stack temperature, and N2 purging for the stack. This long life operating method was based on the fragmentary results of degradation from previous research works. Experimentally, the 5 kW homemade HT-PEMFC stack was operated for a long time based on the proposed method and the stack successfully can operate within the desired degradation rate for the target life time.

A Study on Remodeling Period by Cost Analysis of Finished and Equipped Materials in Apartment Building (공동주택 내/외장재 및 설비재의 비용분석을 통한 리모델링시기 검토를 위한 연구)

  • Oh Jin-Soo;Kim Ki-Hyung;Lee Myung-Sik
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.5 s.52
    • /
    • pp.218-225
    • /
    • 2005
  • In this apartment market, many apartments are being reconstructed within even less than 20 years from their first construction. This entails many problems in environmental and economical facets, for which many researches are under way in several institutions and universities. International cases show that the international trend goes for remodeling of maintenance, management, and repairing rather than new building. The purpose of this study is to investigate the factors of cost evaluation for establishing the time period of apartment based on durability of material and equipment while considering the economic feasibility of apartment, when remodeling as a concept of sustainability regarding building is being vitalized. This study investigates the proper period of remodeling in consideration of weight accruing to the LC(Life Cycle) and cost based on the standardized durability. The weight of cost, period establishment analysis, and LC according durability varies the data values of remodeling periods. The physical durability and cost from this data enable the investigation into not only the repair period of individual materials of the apartment but also remodeling period.

A Study of Valve-train Life Time Estimate in Engine Durability Test (2) (엔진내구시험을 통한 Valve Train 수명예측에 관한 연구 (2))

  • Kim, Jaejin;Lee, Hwanhui;Myung, Wanghee;Min, Byengdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.75-80
    • /
    • 2014
  • In previous study, make an attempt to estimate exhaust valve seat and seat-ring wear acceleration factor for engine durability test with measuring and consideration of wear mechanism. But found abnormal initial wear rate in exhaust valve seat-ring. And have to improve exhaust valve seat-ring wear rate for reliability reason, because next GDI/Turbo engine is based on this engine and GDI/Turbo engine have higher combustion pressure and higher thermal load. In this study, Trying to find the cause of abnormal wear factor, improve valve-train durability by change specification & design of parts and verify variant parts for improving durability of valve-train. And then I would like to propose a design guide line of valve-train system in a reliability point of view, besides make a complement of previous study.

Durability Evaluation of Gangway Connections for the High Speed Railway Vehicles (고속철도차량 갱웨이 통로연결막의 내구성 평가)

  • Kang, Gil-Hyun;Woo, Chang-Su;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4796-4801
    • /
    • 2014
  • To increase the riding comfort and running stability of articulated type high speed railway vehicles(HSRV), it is important that the gangway connections for the passenger car satisfied fire safety, sound proof and durability under triaxial angular displacement (rolling/yawing/pitching) modes. On the other hand, a domestic test standard on the durability of the rubber components has not been determined. In this study, the fatigue life was predicted using the results of the nonlinear finite element analysis and the fatigue properties. Moreover, a fatigue rig test of the component was constructed to examine the durability.

Study on Structural Durability Analysis at Bicycle Saddle (자전거 안장에서의 구조적 내구성 해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

A Durability Study through the Fatigue Analysis on the Emblem for Car (차량용 엠블럼에 대한 피로해석을 통한 내구성 연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.4
    • /
    • pp.39-47
    • /
    • 2014
  • This study compares and analyzes the results of structural analyses due to three constraint conditions on the emblem for car. The analysis results are studied by investigating the influence due to the column angle combined between the lower plate of amblem and the upper amblem. The combined with the amblem is parallel to the longitudinal axle of the amblem at the first case. The angle combined with the amblem is perpendicular to the lower plate at the second case. The angle combined with the amblem is perpendicular to the amblem at the third case as the last case. The amblem model for car can be thought to be optimized by investigating the fatigue life and the durability of amblem through the simulation of structural and fatigue analyses. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.

Fatigue Durability Analysis due to the Classes of Automotive Wheels (자동차 휠의 종류별 피로 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • This study analyzes structural stress and fatigue about three types of automotive wheels. As maximum equivalent stresses at 1, 2 and 3 types become lower than the yield stress of material and deformations become minute, theses types are thought be safe on durability. Type 2 model has the most fatigue life among three kinds of types and the rest of models with fatigue lives are shown in the order of type 1 and 3. As the most fatigue frequency of type 2 model happens at the state of average stress and amplitude stress on the stress range narrower than type 1 or 3, type 2 model becomes most stable. In case of type 2 with the state near the average stress of 0 MPa and the amplitude stress of 300MPa, the possibility of maximum damage becomes 30%. This stress state can be shown as the most damage possibility. These study results can be effectively utilized with the design on automotive wheel by anticipating and investigating prevention and durability against its damage.