• Title/Summary/Keyword: Durability Assessment

Search Result 216, Processing Time 0.031 seconds

Reliability assessment test for heavy sluice gate of hydraulic cylinder (수문용 대형 유압실린더의 신뢰성 평가)

  • 이용범;현동수;김형의;이근호;정동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.91-97
    • /
    • 2001
  • These Study are for the development of the reliability assessment test code and test equipment and test procedures of the heavy sluice gate hydraulic cylinder. Because there is no reliability test code for the heavy sluice gate hydraulic cylinder inside and outside of the country, the modified reliability test code is made reference for the related existing standards like as ISO, JIS, MIL, TUV, DIN, KS and etc. In this study, the novel method is proposed to evaluate efficiency of the heavy sluice gate hydraulic cylinder on the loading conditions and established the conditions of the acceleration life test to reduce the testing time and cycles. The testing equipments for life test, lode operating test, high and low temperature test and salt spray test have been established for 8 month, and the reliability tests are accomplished. The test results of the heavy sluice gate hydraulic cylinder which is produced and tested initially in Korea are satisfied the durability life cycle on the using conditions.

  • PDF

Propose of Eco-efficiency Evaluation Method for Concrete (콘크리트의 에코효율성 평가방법 제안에 관한 연구)

  • Kim, Tae-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.187-188
    • /
    • 2016
  • The purpose of this study is to develop a method of evaluating eco-efficiency of concrete based on environmental load emission, manufacturing cost, and durability in the concrete production process. Eco-efficiency is an advanced concept used to evaluate eco-friendliness of concrete. This technique intends to produce environment-friendly and highly durable concrete while minimizing environmental load on the ecosystem and manufacturing cost based on the results of service life assessment on concrete. This technique can be utilized to efficiently evaluate sustainability of concrete and find methods to improve it. Furthermore, the vision of this study is to contribute to implementation of environment-friendly concrete and construction industry.

  • PDF

Development of State Assessment System of Low-Rise Reinforced Concrete Buildings to Remodeling (리모델링을 위한 기존 저층형 콘크리트 구조물의 상태평가시스템 개발)

  • Kim, Jin-Soo;Kim, Chang-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.115-123
    • /
    • 2003
  • Remodeling is not subject to strict laws or regulations for permission procedure and structure safety inspection compared with new construction. Most of building owners do not recognize the importance of structural safety enough and place an order to small unlicensed construction company. As a result, important structural materials are damaged without enough investigation into permitted durability and fixed weight and load weight increase. This study suggests a system that can evaluate the state of the building and enables fast judgment on needs of repairing or strengthening as well as needs structural examination.

Automated assessment of cracks on concrete surfaces using adaptive digital image processing

  • Liu, Yufei;Cho, Soojin;Spencer, Billie F. Jr;Fan, Jiansheng
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.719-741
    • /
    • 2014
  • Monitoring surface cracks is important to ensure the health of concrete structures. However, traditional visual inspection to monitor the concrete cracks has disadvantages such as subjective inspection nature, associated time and cost, and possible danger to inspectors. To alter the visual inspection, a complete procedure for automated crack assessment based on adaptive digital image processing has been proposed in this study. Crack objects are extracted from the images using the subtraction with median filter and the local binarization using the Niblack's method. To adaptively. determine the optimal window sizes for the median filter and the Niblack's method without distortion of crack object an optimal filter size index (OFSI) is proposed. From the extracted crack objects using the optimal size of window, the crack objects are decomposed to the crack skeletons and edges, and the crack width is calculated using 4-connected normal line according to the orientation of the local skeleton line. For an image, a crack width nephogram is obtained to have an intuitive view of the crack distribution. The proposed procedure is verified from a test on a concrete reaction wall with various types of cracks. From the crack images with different crack widths and patterns, the widths of cracks in the order of submillimeters are calculated with high accuracy.

Durability Assessment of Polyoxymethylen Using Ultrasonic Fatigue Testing (초음파 피로시험법을 이용한 엔지니어링 플라스틱 (Polyoxymethylen ; POM)의 내구성 평가)

  • Cho, In Sik;Hwang, Jung Ho;Oh, Joo Yeon;Kim, Hyun Chang;Oh, Sae Hoon;Lee, Chang Soon;Park, In Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.781-785
    • /
    • 2015
  • In this study, a newly developed ultrasonic fatigue test was performed for durability assessment of polyoxymethylene engineering plastic, which has a high crystallization rate and degree of crystallization. Fatigue strength of POM (polyoxymethylene) was performed on a piezoelectric UFT developed by Mbrosia Co., Ltd(1), operating at a high frequency of 20 kHz. The test results showed a fatigue limit of 5.0~6.0 MPa under fatigue testing at R = -1, 20kHz; and, electron microscopy revealed the size effect by risk volume and fractured dimple structure after the coalescence of micro-voids through the crazing effect, which occurs during the failure of a polymer.

A Study on Durability and Impermeability of Environmentally Friendly Inorganic Ground Injection Material (환경 친화적인 무기질계 지반주입재의 내구성 및 차수효과에 관한 연구)

  • Chun, Byungsik;Kang, Hyoungnam;Do, Jongnam;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.113-119
    • /
    • 2006
  • Recently, the ground injection method using water glasses as one of the main resources and the products of these constructions have basic problems in terms of the method of constructions for the permanent foundation reinforcement and stopping leakage of water because they have some serious problems such as durability, compressive strength, injectant eluviation and so forth even though they are still used to stop leakage of water in the temporary structures. The purpose of this study is to demonstrate the strength characteristic and environment friendliness of NDS method by unconfined compressive strenth test, permeability test, length change test, leaching test, and assessment of environmental impact in comparison water glass type material. The test results show that NDS method has significant improvement of strength, permeability, volume change, and leaching. An assessment of environmental impact also demonstrates that the NDS material is environmentally friendly.

  • PDF

A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment (부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.97-105
    • /
    • 2009
  • Development and use of blended cement concrete is gaining more importance in the construction industry with reference to durability mainly due to the pore refinement and reduction in permeability. Cracks play a major role on important parameters like permeability, rate of chloride ingress, compressive strength and thus affect the reinforcement corrosion protection. Furthermore, when a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the penetration of concrete has been the subject of numerous investigations. Therefore assessing the service life using blended concrete becomes obviously in considering the durability. In the present study, the corrosion assessment of composite concrete beams with and without crack with of 0.3mm using OPC, 30% PFA, 60% GGBS, 10% SF was performed using half cell potential measurement, galvanic potential measurement, mass loss of steel over a period of 60days under marine environmental conditions and the results were discussed in detail.

Development of Durable Reliability Assessment Methods for Heavy Duty Coatings

  • Kim, Seung-Jin;Jung, Ho;Yang, In-Mo;Tanaka, Takeyuki
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.155-163
    • /
    • 2005
  • Heavy duty coating are required to have minimum durable period of 15 years under average usage environment because these paints are coated with purpose of anti-corrosion, antifouling, plastering etc. Onto steel structures constructed upon land and sea and other ferrous structures of electric power generation plants, electricity transmission towers, large structures of various plants, etc. Therefore we tried to estimate heavy duty coating longevity through reliability evaluation method and used combined cyclic anti-conrrosion test method composed of drying, moisturizing and salt spray as for accelerated life test to estimate longevity. Accelerated life test hours to heavy duty coating of first grade (with longevity not less than 15 years) specification may be obtained from troubleless test hours $t_n=\frac{B_p}{n^{1/\beta}}\left[\frac{1n(1-CL)}{1n(1-p)} \right]^{1/\beta}=19.671$ (yr) where shape parameter $\beta=1.1$, confidence level CL=80 %, warranty life $B_{10}=15$ yr and sampling size n=10 (2 sets). Because acceleration factor {AF} found by accelerated test is 41.7, accelerated life test hours required may be represented about 4,132 hr so that if this amount of hours is converted to number of cycles(6 hr/cycle) of complex cycle corrosion resistance test then the amount is tantamount about 690 cycles. That means if there does not occur trouble failure (with defect factor sum not more than 20) during when there is performed 690 cycles of combined cyclic anti-corrosion test to heavy duty coating specimen then it signifies that there can be warranted longevity $B_{10}$ of 15 yr under condition of confidence level CL=80 %.

Performance Evaluation for Deteriorated Masonry of Military Facilities (조적조 노후 군시설의 성능평가기준)

  • Yang, Eun-Bum;Shin, Jong-Hyun;Lee, Chan-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.167-174
    • /
    • 2003
  • Military facilities with masonry have a great portion in the whole military facilities. But lots of them have been used for more than 20 years, the degree of deterioration of the facilities are serious. Futhermore, as insufficient budget for the facilities maintenance and poor maintenance, the performance of the aged masonry facilities have continually decreased. We suggest a structural performance assessment criteria for the military facility through literature review, interview with experts and questionnaire. The major assessment factors for the structural performance include the inclining and sinking degree of the facilities, durability of materials and resisting force of the structural members.

Life Prediction for High Pressure Hose of Power Steering System by Impulse Pressure Test (충격 압력을 받는 파워스티어링 시스템의 고압호스 수명 예측)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Park, Jong-Won;Lee, Jong-Hwang;Jeong, Won-Wook;Im, Young-Han;Hwang, Kwon-Tae;Lee, Young-Shin;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.91-96
    • /
    • 2010
  • The hydraulic hose can be divided with the low pressure, the medium pressure, and the high pressure hose according to the applied pressure. The power steering system in a passenger car can be divided with the high pressure and the low pressure hose. This study deals with the life prediction for high pressure hose to be given impulse pressure which was generated in turning the car. To adjust with external and internal condition, impulse pressure and oil temperature need to be controlled with impulse test system. The result, which is only controlled with the pressure and oil temperature, adapted Calibrated Accelerated Life Test(CALT) method to predict the life of the high pressure hose and analyzed the swagging part by finite element method during the impulse test.