• 제목/요약/키워드: Durability Analysis

검색결과 1,640건 처리시간 0.043초

모달 응력 회복법(Modal Stress Recovery)을 이용한 Torsion Beam Axle 내구해석 (Analysis of Durability of Torsion Beam Axle Using Modal Stress Recovery Method)

  • 고준복;임영훈;이동철
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1339-1344
    • /
    • 2010
  • 모달중첩법은 구조물의 진동특성을 고려하여 내구수명을 평가할 수 있는 내구해석 기법이다. 본 논문에서는 모달중첩법과 유사하면서도 다물체 동역학 해석시 모달좌표를 직접 계산하여 전체적인 해석시간을 줄일 수 있는 모달응력 회복법을 이용한 내구해석 기법의 타당성에 대하여 검토하였다. 이를 위해 자동차 부품 중 대표적으로 동특성을 고려해야 하는 토션빔 액슬에 대하여 모달응력 회복법을 이용한 내구해석 및 시험을 실시하였다. 해석결과는 시험결과와 취약위치, 내구수명 등이 양호한 일치 결과를 나타내었다. 따라서 모달응력 회복법을 이용한 내구해석 기법은 다양한 구조물의 동특성을 반영한 내구수명 평가에 적용될 수 있을 것이다.

자동차용 강재 풀리의 설계 기준에 대한 연구 (A Study of the Design Criterion of a Steel Pulley for an Automobile)

  • 황범철;장재덕;주인식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2005
  • More than five pulleys are used in an automobile, such as crankshaft, water pump, air-con compressor, fan and power steering pump pulley. These pulleys are parts that need durability until retiring a car. But there is no design criterion for durability, so pulleys are designed by the experience of designer and trial and error. So, in this study, we carried out stress analysis at durability test condition and compared analysis results to durability test results. It is found that the design criterion for durability is defined as a safety factor and a safety factor is different according to the distance between the center line of v-grooves and the mating surface.

  • PDF

항만 콘크리트 구조물의 내구성 파괴확률 예측을 위한 신뢰성 모델 (Reliability-based Model of Durability Failure for Harbor Concrete Structure)

  • 한상훈;박우선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.471-474
    • /
    • 2005
  • Reliability-based durability model was developed to consider the uncertainty of analysis variables in durability model for harbor concrete structures. The durability analysis program based on Finite Element Method (FEM) was modified adopting the reliability concept to estimate the probability of durability failure. Water-cement ratio in the durability analysis is the most important factor influencing chloride diffusion coefficient, evaporable water, etc. The probability distribution of water-cement ratio was calculated converting standard deviations of compressive strength in Concrete Standard Code to those of water-cement ratio. Based on the Monte Carlo Simulation, the probabilities of penetration depth and durability failure were calculated.

  • PDF

콘크리트 구조물의 확률론적 내구성 해석 (A Probability-Based Durability Analysis of Concrete Structures)

  • 김지상;이광명;정상화;배수호;최규용;양종호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.189-192
    • /
    • 2005
  • In recent years, many research works have been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environments. In particular, the development of new procedures for probability-based durability analysis/design has proved to be very valuable. In this paper, the equation used for modelling of the chloride penetration was based on Fick's Second Law of Diffusion in combination with a time dependent diffusion coefficient. The probability analysis of the durability performance was performed by use of a Monte Carlo Simulation. The procedure was applied to an example based on limited data gathered in this country. The influences of each parameter on the durability of concrete structures are studied and some comments for durability design are given. The new procedure may be very useful in designing concrete structures in chloride containing environments.

  • PDF

Suspension System의 가속내구해석 (Accelerated Durability Analysis of Suspension System)

  • 민한기;정종안;양인영
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

COMPUTATIONAL DURABILITY PREDICTION OF BODY STRUCTURES IN PROTOTYPE VEHICLES

  • Kim, H.-S.;Yim, H.-J.;Kim, C.-B.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.129-135
    • /
    • 2002
  • Durability estimation of a prototype vehicle has traditionally relied heavily on accelerated durability tests using predefined proving grounds or rig tests using a road simulator. By use of those tests, it is very difficult to predict durability failures in actual service environments. This motivated the development of an integrated CAE (Computer Aided Engineering) methodology for the durability estimation of a prototype vehicle in actual service environments. Since expensive computational costs such as computation time and hardware resources are required for a full vehicle simulation in those environments with a very long span of event time, the conventional CAE methodologies have little feasibility. An efficient computational methodology for durability estimations is applied with theoretical developments. The effectiveness of the proposed methodology is shown by the comparison of results of the typical actual service environment such as the city mode with those of the typical accelerated durability test over the Belgian road.

자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용 (Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module)

  • 손성효;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

자동차 언더바의 구조 및 피로해석을 통한 내구성 연구 (A Study on Durability of Under Bar at Car through Structural and Fatigue Analysis)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.44-50
    • /
    • 2015
  • This study investigated the durability of the under bar of a car through structural and fatigue analysis. Model 1 had the lowest value among three kinds of models. In the case of the maximum equivalent stress and displacement at structural analysis, model 1 showed the highest durability. Also, models 3 and 2 showed structural durability in order of this value. In the case of fatigue analysis, the maximum fatigue lives of the three models were equal to $2{\times}10^7$cycles. However, model 1 showed the highest value among the three models, as the minimum fatigue life of model 1 becames 92.56 cycles. Also models 3 and 2 showed fatigue durability in order of this value. The maximum possibility of fatigue damage for models1,2,and 3 became 30%. If the results of this study are applied to change the design shape of the under bar of cars, the ride comfort for automobile passengers and car durability can be improved.

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

굴삭기휠의 형상별 구조 강도에 대한 내구성 연구 (Durability Study on Structural Strength due to the Shape of Excavator Wheel)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.