• Title/Summary/Keyword: Dump Load

Search Result 25, Processing Time 0.02 seconds

An Strategy of Increasing the Wind Power Penetration Limit with VSC-HVDC in Jeju Power System (전압형 HVDC에 의한 제주계통의 풍력한계용량 증대 방안)

  • LEE, SEUNGMIN;Chae, Sang Heon;Kim, Ho Min;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.461-462
    • /
    • 2015
  • The government on Jeju Special Self-governing Province has a policy named 'Carbon Free Island Jeju by 2030'. The main purpose in this policy is to install wind power system with the total capacity of 1.35 GW by 2020. When the demand load on Jeju Island power system is lower than entire output power, a lot of dump power will be produced from the large-scale wind farms. It will be able to cause the wind power limit on Jeju Island. Consequently, the additional power facility must be installed to ensure stable power system operation in Jeju Island and increase wind power limit. From this point, this paper proposes the installation of MMC-HVDC, which can supply power in real time in the desired direction. The effectiveness of MMC-HVDC based on measured data of Jeju Island power system will be verified by using PSCAD/EMTDC simulation program.

  • PDF

Kinematics and Structural Analysis for Optimization of an Electro-Hydraulic Sliding Deck Systems (전동 유압 슬라이딩 데크 시스템 최적화를 위한 기구학 및 구조해석)

  • Moon, Hyeok-Joo;Ryuh, Beom-Sahng;Oh, Young-Sup;Kim, Man-Jung;Lee, Jung-hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.21-28
    • /
    • 2017
  • Electro-hydraulic sliding deck systems have been developed to reduce the weight for the loading of an agricultural machine. The extension length of the sliding deck was calculated according to the bed's dump angle. The optimum thickness and material were determined using a large and heavy load at acceptable angles. In addition, the degrees of freedom were calculated to obtain the input/output relationship of the system. An equation was derived using a simplified model formula for the extended length of the sliding deck according to the bed's dump angle. Also, the advance length at the maximum and minimum angles of the system was determined using numerical analysis. A down-scaled model of the system was constructed and verified by experiments. The deck was simplified to determine the material and thickness of the sliding deck and for the selection of the two representative materials. The simplified model was tested in deformation tests and stress tests with different thicknesses and materials using a structure analysis program. The analysis results show that ATOS80 is the best among the two materials for reducing the weight of the system.

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

A Study on Adaptive Operation Control to Stabilize bus Voltage of GEO Satellite Power Supply Module (정지궤도 위성용 전력공급 모듈의 버스 전압 안정화를 위한 최적동작 제어에 관한 연구)

  • Ahn, Tae-Young;Choe, Hyun-Su
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.123-129
    • /
    • 2016
  • In this paper, results of produced PCU(Power Control Unit) prototype was showed by suggesting and maintaining optimal operation status which let the three functional modules automatically operate with its necessity by prioritizing operation process. In order to validate effectiveness of the suggested method, we produced a test PCU and examined the results. PCU consists of S3R(Sequential Switching Shunt Regulator), BCR(Battery Charge Regulator), and BDR(Battery Discharge Regulator): converting photovoltaic power into constant voltage at linked bus voltage; storing dump power in the battery which is an auxiliary energy storage device; and supplying power charged in battery to the load. To maintain its high reliability and optimal condition of these three power conversion modules, each module operates in parallel and stable bus voltage is required to be retained at all-time due to the nature of power supply for satellite.

Long-term Performance Prediction of Piezoelectric Energy Harvesting Road Using a 3-Dimensional Finite Element Method (3차원 유한요소 해석을 통한 압전에너지 도로의 장기 공용성 예측)

  • Kim, Hyun Wook;Nam, Jeong-Hee;Choi, Ji Young
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.107-115
    • /
    • 2017
  • PURPOSES : The piezoelectric energy road analysis technology using a three-dimensional finite element method was developed to investigate pavement behaviors when piezoelectric energy harvesters and a new polyurethane surface layer were installed in field conditions. The main purpose of this study is to predict the long-term performance of the piezoelectric energy road through the proposed analytical steps. METHODS : To predict the stresses and strains of the piezoelectric energy road, the developed energy harvesters were embedded into the polyurethane surface layer (50 mm from the top surface). The typical type of triaxial dump truck loading was applied to the top of each energy harvester. In this paper, a general purpose finite element analysis program called ABAQUS was used and it was assumed that a harvester is installed in the cross section of a typical asphalt pavement structure. RESULTS : The maximum tensile stress of the polyurethane surface layer in the initial fatigue model occurred up to 0.035 MPa in the transverse direction when the truck tire load was loaded on the top of each harvester. The maximum tensile stresses were 0.025 MPa in the intermediate fatigue model and 0.013 MPa in the final fatigue model, which were 72% and 37% lower than that of the initial stage model, respectively. CONCLUSIONS : The main critical damage locations can be estimated between the base layer and the surface layer. If the crack propagates, bottom-up cracking from the base layer is the main cracking pattern where the tensile stress is higher than in other locations. It is also considered that the possibility of cracking in the top-down direction at the edge of energy harvester is more likely to occur because the material strength of the energy harvester is much higher and plays a role in the supporting points. In terms of long-term performance, all tensile stresses in the energy harvester and polyurethane layer are less than 1% of the maximum tensile strength and the possibility of fatigue damage was very low. Since the harvester is embedded in the surface layer of the polyurethane, which has higher tensile strength and toughness, it can assure a good, long-term performance.