• 제목/요약/키워드: Due-Date Assignment

검색결과 14건 처리시간 0.024초

Predicting Due Dates under Various Combinations of Scheduling Rules in a Wafer Fabrication Factory

  • Sha, D.Y.;Storch, Richard;Liu, Cheng-Hsiang
    • Industrial Engineering and Management Systems
    • /
    • 제2권1호
    • /
    • pp.9-27
    • /
    • 2003
  • In a wafer fabrication factory, the completion time of an order is affected by many factors related to the specifics of the order and the status of the system, so is difficult to predict precisely. The level of influence of each factor on the order completion time may also depend on the production system characteristics, such as the rules for releasing and dispatching. This paper presents a method to identify those factors that significantly impact upon the order completion time under various combinations of scheduling rules. Computer simulations and statistical analyses were used to develop effective due date assignment models for improving the due date related performances. The first step of this research was to select the releasing and dispatching rules from those that were cited so frequently in related wafer fabrication factory researches. Simulation and statistical analyses were combined to identify the critical factors for predicting order completion time under various combinations of scheduling rules. In each combination of scheduling rules, two efficient due date assignment models were established by using the regression method for accurately predicting the order due date. Two due date assignment models, called the significant factor prediction model (SFM) and the key factor prediction model (KFM), are proposed to empirically compare the due date assignment rules widely used in practice. The simulation results indicate that SFM and KFM are superior to the other due date assignment rules. The releasing rule, dispatching rule and due date assignment rule have significant impacts on the due date related performances, with larger improvements coming from due date assignment and dispatching rules than from releasing rules.

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times: a Case Study on a Paper Remanufacturing System

  • Kim, Jun-Gyu;Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • 제18권1호
    • /
    • pp.1-12
    • /
    • 2012
  • In this paper, we report a case study on the common due-date assignment and scheduling problem in a paper remanufacturing system that produces corrugated cardboards using collected waste papers for a given set of orders under the make-to-order (MTO) environment. Since the system produces corrugated cardboards in an integrated process and has sequence-dependent setups, the problem considered here can be regarded as common due-date assignment and sequencing on a single machine with sequence-dependent setup times. The objective is to minimize the sum of the penalties associated with due-date assignment, earliness, and tardiness. In the study, the earliness and tardiness penalties were obtained from inventory holding and backorder costs, respectively. To solve the problem, we adopted two types of algorithms: (a) branch and bound algorithm that gives the optimal solutions; and (b) heuristic algorithms. Computational experiments were done on the data generated from the case and the results show that both types of algorithms work well for the case data. In particular, the branch and bound algorithm gave the optimal solutions quickly. However, it is recommended to use the heuristic algorithms for large-sized instances, especially when the solution time is very critical.

납기를 고려한 FMS 일정계획에서의 기계선정규칙 (Next station selection rules for FMS scheduling against due-date)

  • 문일경;김태우
    • 경영과학
    • /
    • 제13권2호
    • /
    • pp.147-161
    • /
    • 1996
  • Due-date is an important factor in Flexible Manufacturing System scheduling. Even though most of researchers have focused part selection and loading problem using fixed due-date assignment rules, FMSs consist of multi-function machines which facilitate alternative processes. This research investigates interactions of three dispatching mechanisms, three NSS (Next Station Selection) rules and four due-date assignment rules using simulation. Both cost-based and time-based performance measures are considered in this research.

  • PDF

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times

  • Kim, Jun-Gyu;Yu, Jae-Min;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • 제19권1호
    • /
    • pp.29-36
    • /
    • 2013
  • This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.

다수(多数) 기계(機械)의 총비용(總費用)을 최소화(最小化)하는 최적작업순서, 공통납기일 및 작업완료일 결정을 위한 일정계획(日程計劃) (Optimum Scheduling Algorithm for Job Sequence, Common Due Date Assignment and Makespan to Minimize Total Costs for Multijob in Multimachine Systems)

  • 노인규;김상철
    • 대한산업공학회지
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 1986
  • This research is concerned with n jobs, m parallel identical machines scheduling problem in which all jobs have a common due date. The objective of the research is to develop an optimum scheduling algorithm for determining an optimal job sequence, the optimal value of the common due date and the minimum makespan to minimize total cost. The total cost is based on the common due date cost, the earliness cost, the tardiness cost and the flow time cost of each job in the selected sequence. The optimum scheduling algorithm is developed. A numerical example is given to illustrate the scheduling algorithm.

  • PDF

병렬기계로 구성된 인쇄회로기판 제조공정에서의 스케쥴링에 관한 연구 (Unrelated Parallel Machine Scheduling for PCB Manufacturing)

  • 김대철
    • 산업경영시스템학회지
    • /
    • 제27권4호
    • /
    • pp.141-146
    • /
    • 2004
  • This research considers the problem of scheduling jobs on unrelated parallel machines with a common due date. The objective is to minimize the total absolute deviation of job completion times about the common due date. This problem is motivated by the fact that a certain phase of printed circuit board manufacturing and other production systems is bottleneck and the processing speeds of parallel machines in this phase are different for each job. A zero-one integer programming formulation is presented and two dominance properties are proved. By these dominance properties, it is shown that the problem is reduced to asymmetric assignment problem and is solvable in polynomial time.

신속제조환경에서의 새로운 생산입력통제방식에 관한 연구 (A Study of New Production Input Control in an Agile Manufacturing Environment)

  • 김현수
    • 대한산업공학회지
    • /
    • 제23권4호
    • /
    • pp.699-708
    • /
    • 1997
  • Production control is usually composed of due-dote assignment, production input control, and priority dispatching rule. A production input control(PIC) is mainly to control the WIP level on the shop floor. On the other hand, a priority dispatching rule(PDR) is mainly to control the tardiness/earliness of on order and number of tardy jobs. Therefore, if we select a particular PIC which can control only a particular performance measure(i.e., tardiness), it may cause worsening other performance measure(i.e., WIP level, shopfloor time, etc.) This newly developed production input control, DRD(Dual Release-Dates), is mainly designed to control the WIP level on the shop floor by employing two different release-dates of an order(earliest release. date and latest release-date and the release condition (relationship between the current WIP level and the pre-defined maximum WIP level) while trying to meet the due-date of the order.

  • PDF

품질을 고려한 작업투입에 관한 연구 (Study on Dispatching with Quality Assurance)

  • 고효헌;김지현;백준걸;김성식
    • 대한산업공학회지
    • /
    • 제34권1호
    • /
    • pp.108-121
    • /
    • 2008
  • Dispatching rule for parallel machines with multi product is proposed in this paper, In current market,customer's request for higher quality is increasing, In accordance with such demand, manufacturers are focusingon improving the quality of the products. Such shift in production objective is risky. The possibility ofneglecting another important factor in customer satisfaction increases, namely due dates. From the aspect ofimproving quality, frequency of product assignment to limited number of high performance machines willincrease. This will lead to increased waiting time which can incur delays, In the case of due date orientedproduct dispatch, Products are assigned to machines without consideration for quality. Overall deterioration ofproduct quality is inevitable, In addition, Poor products will undergo rework process which can increase delays.The objective of this research is dispatching products to minimize due date delays while improving overallquality. Quality index is introduced to provide means of standardizing product quality. The index is used toassure predetermined quality level while minimizing product delays when dispatching products. Qualitystandardization method and dispatching algorithm is presented. And performance evaluation is performed withcomparison to various dispatching methods.

서로 다른 납기를 갖는 작업에 대한 이종 병렬기계에서의 일정계획수립 (Scheduling Jobs with different Due-Date on Nonidentical Parallel Machines)

  • 강용혁;이홍철;김성식
    • 대한산업공학회지
    • /
    • 제24권1호
    • /
    • pp.37-50
    • /
    • 1998
  • This paper considers the nonidentical parallel machine scheduling problem in which n jobs having different due dates are to be scheduled on m nonidentical parallel machines. For the make-to-order manufacturing environment, the objective is to minimize the number of tardy jobs. A 0-1 nonlinear programming model is formulated and a heuristic algorithm that allocates and sequences jobs to machines is developed. The proposed algorithm makes use of the concept of assignment problem based on the suitability measure as the cost coefficient. Computational experiments show that the proposed algorithm is superior to the existing one in some performance measures such as number of tardy jobs. In addition, this algorithm is appropriate for solving real industrial problems efficiently.

  • PDF