• Title/Summary/Keyword: Ductlie cast iron

Search Result 3, Processing Time 0.016 seconds

Effects of Alloying Element and Heat Treatment on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold (쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 합금원소 및 열처리의 영향)

  • Kim, Hyo-Min;Kwon, Min-Young;Chun, Byung-Chul;Kwon, Do-Young;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.76-84
    • /
    • 2020
  • The effects of Alloying Element and Heat Treatment on the mechanical properties of ductile cast iron poured into shell stack molds were investigated. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of tin and copper added, respectively. Those were greatly increased with the increased amount of tin added and the elongation was roughly decreased with it. In the simultaneous addition of copper and tin, the strength and hardness of the tin increased, but the elongation rate decreased. Those were greatly increased and this was decreased with normalizing. In the case of specimens with smaller section sizes during austempering processing, the strength and hardness were higher than those with larger sections, but the elongation rate was lower.

Effects of Mold Variable and Main Alloying Element on the Mechanical Properties of Ductile Cast Iron Poured into Shell Stack Mold (쉘 적층 주조 구상흑연주철의 기계적 성질에 미치는 주형 변수 및 주 합금 원소의 영향)

  • Kim, Hyo-Min;Kwon, Min-Young;Chun, Byung-Chul;Kwon, Do-Young;Kim, Gi-Yeob;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.25-33
    • /
    • 2020
  • The effects of mold variable and main alloying element on the mechanical properties of ductile cast iron poured into shell stack mold were investigated. The strength and hardness of with the smaller cross-section of the diameter of 6.25mm were higher than those of 12.50mm. On the other hand, the elongation of the former was lower than that of the latter. The strength and hardness of the specimens obtained from the center layer in the 5-story stack mold were the lowest and those for other specimens were increased with increased distance from the center. The elongation of those were the highest of all. The strength and hardness of the specimens obtained from the center layer were decreased the elongation was increased with the increased number of layers. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of reaidual magnesium and carbon content added, respectively. The strength and hardness were increased and the elongation was decreased roughly with the increased amounts of silicon content added to 2.45wt% and rather decreased with that to 2.85wt%. The effect of silicon content showed the opposite tendency to those of residual magnesium and carbon content.

Contact Element Generation Method for Casting Analysis by using Projection Method (Projection Method에 의한 주조 해석용 접촉 요소망 생성 기법)

  • Nam, Jeong-Ho;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.40 no.6
    • /
    • pp.146-150
    • /
    • 2020
  • In general, hot metal castings contract and molds expand during the cooling step of a casting process. Therefore, it is important to consider both the casting and mold at the same time in a casting process analysis. For a more accurate analysis that includes the contact characteristics, matching each node of the casting and mold in the contact area is recommended. However, it is very difficult to match the nodes of the casting and the mold when generating elements due to the geometric problem of CAD model data. The present study proposes a mesh generation technique that considers mechanical contact between the casting and the mold in a casting analysis (finite element analysis). The technique focuses on the fact that the mold surrounds the casting. After generating the 3D elements for the casting, the surface elements of the casting in contact with the mold are projected inside the mold to create contact elements that coincide with the contact surface of the casting. It was confirmed that high-quality contact element information and a 3D element net can be automatically generated by the method proposed in this study.