• 제목/요약/키워드: Ductile failure

검색결과 379건 처리시간 0.025초

고인성섬유 복합 모르타르 및 고성능 배근상세를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구 (A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints Using High Ductile Fiber-Reinforced Mortar and Advanced Reinforcing Detailings)

  • 하기주;이동렬;홍건호
    • 콘크리트학회논문집
    • /
    • 제25권2호
    • /
    • pp.233-240
    • /
    • 2013
  • 이 연구에서는 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능을 개선하기 위하여 보-기둥 접합부 영역을 고성능 배근상세 및 고인성섬유 복합 모르타르를 사용하여 보강하고 내진성능을 평가하였다. 총 5개의 실험체를 제작하고 실험을 수행하여 내진성능을 평가하였으며, 이 연구의 실험 결과를 근거로 다음과 같은 결론을 얻었다. 기존 고강도 철근콘크리트 내부 보-기둥 접합부의 위험단면 영역을 고성능 배근상세 및 고인성섬유 복합 모르타르로 보강한 결과 재하 전 과정을 통하여 안정적인 파괴형태 및 내력을 나타내었다. 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능을 개선하기 위하여 고성능 배근상세 및 고인성섬유 복합 모르타르를 사용하여 보강한 실험체(IJIR, IJIRS, IJIRP)는 재하 전 과정을 통하여 안정적인 이력거동을 나타내었고, 최대내력이 표준실험체의 114.2~123.5%, 에너지소산능력은 1.55~1.85배로 표준실험체에 비하여 매우 향상되었다.

변형률 속도를 고려한 유한요소 기반 연성 찢김 해석 기법 개발 (Development of Finite Element Ductile Tearing Simulation Model Considering Strain Rate Effect)

  • 남현석;김지수;김진원;김윤재
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.167-173
    • /
    • 2016
  • 본 논문은 유한요소해석을 이용한 고변형률 조건에서의 연성파손 해석기법을 제안한다. 고변형률 하중이 작용하는 구조물에 대한 파괴거동 예측을 위해 본 논문에서는 Johnson/Cook 모델을 고려한 수정응력 파괴변형률 모델을 사용하였다. 제시된 모델은 인장 실험 모사해석결과로부터 얻어지는 삼축응력 및 파괴변형률에 의해 파손이 정의된다. 다양한 실험속도의 인장 실험결과 및 정적 하중조건에서의 파괴인성 실험을 이용하여 수정응력 파괴변형률 모델의 변수를 결정하였다. 결정된 모델을 이용하여 동적하중조건에서 파괴인성시편에 대한 해석을 수행하였으며 해석결과와 실험결과를 비교하여 해석기법을 검증하였다.

Experimental assessment of post-earthquake retrofitted reinforced concrete frame partially infilled with fly-ash brick

  • Kumawat, Sanjay R.;Mondal, Goutam;Dash, Suresh R.
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.121-135
    • /
    • 2022
  • Many public buildings such as schools, hospitals, etc., where partial infill walls are present in reinforced concrete (RC) structures, have undergone undesirable damage/failure attributed to captive column effect during a moderate to severe earthquake shaking. Often, the situation gets worsened when these RC frames are non-ductile in nature, thus reducing the deformable capability of the frame. Also, in many parts of the Indian subcontinent, it is mandatory to use fly-ash bricks for construction so as to reduce the burden on the disposal of fly-ash produced at thermal power plants. In some scenario, when the non-ductile RC frame, partially infilled by fly-ash bricks, suffers major structural damage, the challenge remains on how to retrofit and restore it. Thus, in this study, two full-scale one-bay, one-story non-ductile RC frame models, namely, bare frame and RC partially infilled frame with fly-ash bricks in 50% of its opening area are considered. In the previous experiments, these models were subjected to slow-cyclic displacement-controlled loading to replicate damage due to a moderate earthquake. Now, in this study these damaged frames were retrofitted and an experimental investigation was performed on the retrofitted specimens to examine the effectiveness of the proposed retrofitting scheme. A hybrid retrofitting technique combining epoxy injection grouting with an innovative and easy-to-implement steel jacketing technique was proposed. This proposed retrofitting method has ensured proper confinement of damaged concrete. The retrofitted models were subjected to the same slow cyclic displacement-controlled loading which was used to damage the frames. The experimental study concluded that the hybrid retrofitting technique was quite effective in enhancing and regaining various seismic performance parameters such as, lateral strength and lateral stiffness of partially fly-ash brick infilled RC frame. Thus, the steel jacketing retrofitting scheme along with the epoxy injection grouting can be relied on for possible repair of the structural members which are damaged due to the captive column effect during the seismic shaking.

수평 반복하중을 받는 비내진상세 RC 중실원형교각의 거동특성 (Behavior of Solid Circular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load)

  • 김재관;김익현;임현우;전귀현
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.83-95
    • /
    • 2001
  • 내진상세가 적용되지 않은 철근콘크리트 교각의 거동특성 및 내진성능을 살펴보기 위해서 축소교각모형실험을 수행하였다. 횡방향 철근이 심부를 구속할 만큼 충분히 배근되어 있지 않은 중심 원형 단면의 실교각을 대상으로 기초 상단의 소성 힌지 부위에서 겹침이음이 된 주철근을 사용했을 때와 연속철근을 사용했을 경우로 구분되도록 철근상세를 결정하였다. 이에 따라 3기의 축소교각시험체를 제작하여 수직방향 축하중을 가한 상태에서 준정적 반복하중을 재하하는 실험을 수행하였다. 실험결과를 통해서 겹침이음이 있는 교각시험체는 연성거동을 하지 않지만, 겹침이음이 없이 연속철근을 사용한 교각시험체는 어느 정도의 한정연성거동을 하는 것으로 분석되었다.

  • PDF

Evaluation of cyclic fracture in perforated beams using micromechanical fatigue model

  • Erfani, Saeed;Akrami, Vahid
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.913-930
    • /
    • 2016
  • It is common practice to use Reduced Web Beam Sections (RWBS) in steel moment resisting frames. Perforation of beam web in these members may cause stress and strain concentration around the opening area and facilitate ductile fracture under cyclic loading. This paper presents a numerical study on the cyclic fracture of these structural components. The considered connections are configured as T-shaped assemblies with beams of elongated circular perforations. The failure of specimens under Ultra Low Cycle Fatigue (ULCF) condition is simulated using Cyclic Void Growth Model (CVGM) which is a micromechanics based fracture model. In each model, CVGM fracture index is calculated based on the stress and strain time histories and then models with different opening configurations are compared based on the calculated fracture index. In addition to the global models, sub-models with refined mesh are used to evaluate fracture index around the beam to column weldment. Modeling techniques are validated using data from previous experiments. Results show that as the perforation size increases, opening corners experience greater fracture index. This is while as the opening size increases the maximum observed fracture index at the connection welds decreases. However, the initiation of fracture at connection welds occurs at lower drift angles compared to opening corners. Finally, a probabilistic framework is applied to CVGM in order to account for the uncertainties existing in the prediction of ductile fracture and results are discussed.

스트럿-타이 모델에 의한 콘크리트 T형 교각 코핑부의 설계 (Design of RC T-type Pier Coping Using Strut-and-Tie Model)

  • 정광회;심별;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.617-622
    • /
    • 2000
  • In this study, effective compressive strength and nodal zone of Strut-and-Tie Model are studied to propose a new design method for RC T-type pier coping for prevention of sudden brittle failure. The coping which transmits loads of bridge to pier should be properly designed to retain ductile behavior. In order to carry out this proper design using STM, tie must yield before concrete fails, and a stress at strut should not exceed a certain effective stress. Therefore, reasonable determination of the effective compressive strength of strut by considering stress states at the nodal zone exactly is very important. Since conventional STM is applied under assumption that all nodes are under hydrostatic stress state, actual non-hydrostatic stress state in nodal zone caused by geometrical characteristics, loading conditions, support conditions of structures can not be considered properly. In order to apply STM for design of RC T-type pier coping, the non-hydrostatic stress state of nodal zone is considered and effective compressive strength is proposed. Then, a new design method of RC T-type pier coping which applies the principle of superposition to obtain optimum ductile behavior is rationally designed.

  • PDF

폐타이어 고무분말 개질 아스팔트 실란트의 물리적 특성에서 유연제의 영향 (Influence of a Flexibilizer on Physical Properties of Crumb Rubber Modified Asphalt Sealants)

  • 김종석
    • 한국도로학회논문집
    • /
    • 제11권3호
    • /
    • pp.33-40
    • /
    • 2009
  • 폐타이어 고무분말은 도로 유지 및 보수제로 아스팔트 바인더의 개질제로 사용되고 있다. 도로보수제인 폐타이어 고무분말 개질 아스팔트 (crumb rubber modified asphalt, CRMA) 실란트에 필요한 접착특성은 저온에서 아스팔트 바인더의 취성과 접착파괴특성 때문에 주목받고 있다. 본 연구에서는 저온에서 CRMAs의 개질제로서 유연제의 영향을 조사하였다. 저온에서 CRMAs의 특성은 침입도, 연화점, 인장 및 인장접착시험을 통하여 측정하였다. 유연제를 도입한 CRMAs에서 CR과 아스팔트바인더의 연성변형이 증가함에 따라 인장접착강도와 변형률이 증가하였다. 저온영역에서 CRMAs의 인장특성과 접착특성은 유연제의 함량이 중요한 요소임을 발견하였다.

  • PDF

탄소섬유쉬트의 정착 보강방법이 RC보의 휨거동에 미치는 영향 (Effect of Anchorage Type of CFS on Flexural Behavior of RC Beams)

  • 신성우;반병렬;이광수;조인철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.202-208
    • /
    • 1998
  • To investigae the effect of anchorage type of carbon fiber sheet (CFS) on flexural behavior of RC beams, the loading test of RC beams reinforced with CFS was conducted in variable of anchorage Type such as bolting anchorage and U type anchorage using CFS. This study can be summarized as follows ; It is confirmed experimentally that the bolting anchorage and U type anchorage with CFS is very effective to delay the bond failure and prevent the peeling of CFS. Also, the anchorage type applied with this study is very effective to improve the ductility compared with the improving of maximum flexural strength of RC beams. It is believed that the anchorage type used this study must secure the ductile capacity of above 3 for the flexural strengthening of RC beams. In the future, it is required to obtain the data about anchorage type of CFS for utilization of field work as well as investigate the ductile capacity of conventional study of anchorage type

  • PDF

Case study on seismic retrofit and cost assessment for a school building

  • Miano, Andrea;Chiumiento, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.53-64
    • /
    • 2020
  • In different high seismic regions around the world, many non-ductile existing reinforced concrete frame buildings, built without adequate seismic detailing requirements, have been damaged or collapsed after past earthquakes. The assessment and the retrofit of these non-ductile concrete structures is crucial theme of research for all the scientific community of engineers. In particular, a careful assessment of the existing building is fundamental for understanding the failure mechanisms that govern the collapse of the structure or the achievement of the recommended limit states. Based on the seismic assessment, the best retrofit strategy can be designed and applied to the structure. A school building located in Avellino province (Italy) is the case study. The analysis of seismic vulnerability carried out on the mentioned building has highlighted deficiencies in both static and seismic load conditions. The retrofit of the building has been designed based on different retrofit options in order to show the real retrofit design developed from the engineers to achieve the seismic safety of the building. The retrofit costs associated to structural operations are calculated for each case and have been summed up to the costs of the in situ tests. The paper shows a real retrofit design case study in which the best solution is chosen based on the results in terms of structural performance and cost among the different retrofit options.

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.