• Title/Summary/Keyword: Dual-programming

Search Result 140, Processing Time 0.027 seconds

DUALITY IN MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS INVOLVING (Hp, r)-INVEX FUNCTIONS

  • Jayswal, Anurag;Ahmad, I.;Prasad, Ashish Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.99-111
    • /
    • 2014
  • In this paper, we have taken step in the direction to establish weak, strong and strict converse duality theorems for three types of dual models related to multiojective fractional programming problems involving ($H_p$, r)-invex functions.

MIXED TYPE DUALITY FOR A PROGRAMMING PROBLEM CONTAINING SUPPORT FUNCTION

  • Husain, I.;Jabeen, Z.
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.211-225
    • /
    • 2004
  • A mixed type dual to a programming problem containing support functions in a objective as well as constraint functions is formulated and various duality results are validated under generalized convexity and invexity conditions. Several known results are deducted as special cases.

Design of digital filters using linear programming (선형 프로그래밍에 의한 디지탈 필터의 설계)

  • 조성현;임화영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.137-141
    • /
    • 1986
  • This paper presents optimal recursive digital filter design to meet simultaneous specifications of magnitude and linear phase characteristics. As is well known, the overshoot in the vicinity of discontinuity is hight. The technique using linear programming (the dual programming) is choosing more specification points in the vicinity of band limit frequency. The resulting filter can shown improved response and numerical accuracy with reduced nonuniform specification points in frequency domain.

  • PDF

Duality in non-linear programming for limit analysis of not resisting tension bodies

  • Baratta, A.;Corbi, O.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.15-30
    • /
    • 2007
  • In the paper, one focuses on the problem of duality in non-linear programming, applied to the solution of no-tension problems by means of Limit Analysis (LA) theorems for Not Resisting Tension (NRT) models. In details, one demonstrates that, starting from the application of the duality theory to the non-linear program defined by the static theorem approach for a discrete NRT model, this procedure results in the definition of a dual problem that has a significant physical meaning: the formulation of the kinematic theorem.

PARAMETRIC DUALITY MODELS FOR DISCRETE MINMAX FRACTIONAL PROGRAMMING PROBLEMS CONTAINING GENERALIZED(${\theta},{\eta},{\rho}$)-V-INVEX FUNCTIONS AND ARBITRARY NORMS

  • Zalmai, G.J.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.105-126
    • /
    • 2007
  • The purpose of this paper is to construct several parametric duality models and prove appropriate duality results under various generalized (${\theta},{\eta},{\rho}$)-V-invexity assumptions for a discrete minmax fractional programming problem involving arbitrary norms.

SYMMETRIC DUALITY FOR FRACTIONAL VARIATIONAL PROBLEMS WITH CONE CONSTRAINTS

  • Ahmad, I.;Yaqub, Mohd.;Ahmed, A.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.281-292
    • /
    • 2007
  • A pair of symmetric fractional variational programming problems is formulated over cones. Weak, strong, converse and self duality theorems are discussed under pseudoinvexity. Static symmetric dual fractional programs are included as special case and corresponding symmetric duality results are merely stated.

On dual transformation in the interior point method of linear programming (내부점 선형계획법의 쌍대문제 전환에 대하여)

  • 설동렬;박순달;정호원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.289-292
    • /
    • 1996
  • In Cholesky factorization of the interior point method, dense columns of A matrix make dense Cholesky factor L regardless of sparsity of A matrix. We introduce a method to transform a primal problem to a dual problem in order to preserve the sparsity.

  • PDF

MODIFIED GEOMETRIC PROGRAMMING PROBLEM AND ITS APPLICATIONS

  • ISLAM SAHIDUL;KUMAR ROY TAPAN
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.121-144
    • /
    • 2005
  • In this paper, we propose unconstrained and constrained posynomial Geometric Programming (GP) problem with negative or positive integral degree of difficulty. Conventional GP approach has been modified to solve some special type of GP problems. In specific case, when the degree of difficulty is negative, the normality and the orthogonality conditions of the dual program give a system of linear equations. No general solution vector exists for this system of linear equations. But an approximate solution can be determined by the least square and also max-min method. Here, modified form of geometric programming method has been demonstrated and for that purpose necessary theorems have been derived. Finally, these are illustrated by numerical examples and applications.

A New Approach to Solve the Rate Control Problem in Wired-cum-Wireless Networks

  • Loi Le Cong;Hwang Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1636-1648
    • /
    • 2006
  • In this paper, we propose a new optimization approach to the rate control problem in a wired-cum-wireless network. A primal-dual interior-point(PDIP) algorithm is used to find the solution of the rate optimization problem. We show a comparison between the dual-based(DB) algorithm and PDIP algorithm for solving the rate control problem in the wired-cum-wireless network. The PDIP algorithm performs much better than the DB algorithm. The PDIP can be considered as an attractive method to solve the rate control problem in network. We also present a numerical example and simulation to illustrate our conclusions.

  • PDF