• Title/Summary/Keyword: Dual-port SDRAM

Search Result 3, Processing Time 0.017 seconds

Performance Evaluation and Optimization of Dual-Port SDRAM Architecture for Mobile Embedded Systems (모바일 내장형 시스템을 위한 듀얼-포트SDRAM의 성능 평가 및 최적화)

  • Yang, Hoe-Seok;Kim, Sung-Chan;Park, Hae-Woo;Kim, Jin-Woo;Ha, Soon-Hoi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.542-546
    • /
    • 2008
  • Recently dual-port SDRAM (DPSDRAM) architecture tailored for dual-processor based mobile embedded systems has been announced where a single memory chip plays the role of the local memories and the shared memory for both processors. In order to maintain memory consistency from simultaneous accesses of both ports, every access to the shared memory should be protected by a synchronization mechanism, which can result in substantial access latency. We propose two optimization techniques by exploiting the communication patterns of target applications: lock-priority scheme and static-copy scheme. Further, by dividing the shared bank into multiple blocks, we allow simultaneous accesses to different blocks thus achieve considerable performance gain. Experiments on a virtual prototyping system show a promising result - we could achieve about 20-50% performance gain compared to the base DPSDRAM architecture.

Dual-Port SDRAM Optimization with Semaphore Authority Management Controller

  • Kim, Jae-Hwan;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • This paper proposes the semaphore authority management (SAM) controller to optimize the dual-port SDRAM (DPSDRAM) in the mobile multimedia systems. Recently, the DPSDRAM with a shared bank enabling the exchange of data between two processors at high speed has been developed for mobile multimedia systems based on dual-processors. However, the latency of DPSDRAM caused by the semaphore for preventing the access contention at the shared bank slows down the data transfer rate and reduces the memory bandwidth. The methodology of SAM increases the data transfer rate by minimizing the semaphore latency. The SAM prevents the latency of reading the semaphore register of DPSDRAM, and reduces the latency of waiting for the authority of the shared bank to be changed. It also reduces the number of authority requests and the number of times authority changes. The experimental results using a 1 Gb DPSDRAM (OneDRAM) with the SAM controllers at 66 MHz show 1.6 times improvement of the data transfer rate between two processors compared with the traditional controller. In addition, the SAM shows bandwidth enhancement of up to 38% for port A and 31% for port B compared with the traditional controller.