• Title/Summary/Keyword: Dual-mode scramjet

Search Result 25, Processing Time 0.02 seconds

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part II. Performance Sensitivity (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part II. 성능민감도)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.596-604
    • /
    • 2010
  • In order to investigate the operating conditions and major design parameters of a dual ramjet propulsion system, an theoretical analysis of ramjet and scramjet propulsion systems was performed. The performance characteristics of each engine are delivered by thermo-dynamical cycle analysis, considering loss effects in a real engine. The performance sensitivity analysis is conducted by investigating various performance parameters, such as an intake efficiency, combustor inlet Mach number, configuration of the combustor, fuel flow rate, and exhaust nozzle efficiency. Based on these analysis results, the processes of application to dual ramjet cycle engines are specified.

Analytical Study on Performance Parameters of High Speed Propulsion (Ramjet/Scramjet) (초고속 순항 추진기관(램제트/스크램제트)의 성능인자에 대한 해석적 연구)

  • Byun Jong-Ryul;Sung Hong-Gye;Yoon Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper presents a theoretical analysis of a ramjet and scramjet engine according to flight Mach numbers. The main objective of this study is to give physical understanding on the performance parameters and to provide a more unified treatment of the fundamentals of ramjet and scramjet propulsion, mainly based on analytical methods. The effects of flight Mach number, inlet characteristics, and combustion on the performance of ramjet and scramjet are analysed. The cycle analysis are conducted on both combustors with constant pressure and with constant cross-section area, on which comparisons are made. Also the optimal Mach number at the entry of the combustor is studied.

  • PDF

Design Study of a Dual-Mode Ramjet Engine with Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진의 설계 연구)

  • Yang, Inyoung;Lee, Yang-Ji;Lee, Kyung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.33-41
    • /
    • 2015
  • Scaled model of a dual-mode ramjet engine with large backward-facing step, as a component of the rocket-based combined cycle engine, was designed. Design parameters were derived for this engine with the consideration of application for the rocket-based combined cycle engine. Design methodology was established for these design parameters. The design was partially verified through numerical study. Flow characteristics of the dual-mode ramjet engine with large backward-facing step was investigated experimentally. The design methodology for relevant design parameters established in this study was verified as feasible.

Performance Design of a Dual Mode Ramjet Engine (초음속에서 극초음속까지 비행을 위한 이중모드 램제트엔진의 성능 설계)

  • Choe, Se-Young;Yeom, Hyo-Won;Kim, Sun-Kyoung;Sung, Hong-Gye;Byun, Jong-Ryul;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.289-292
    • /
    • 2007
  • Performance of a dual mode ramjet engine based on the sensitivity analysis of design parameters (the gap between cowl and inlet spike and combustor length) was analyzed from the view points of aerodynamics and thermodynamics. A dual mode engine performing from supersonic to hypersonic (Mach no. 2 to 6) was designed in a proposed flight envelop. The design method and result were comparable to the results of the previous study, Hyperion RLV, and the CFD calculation.

  • PDF

Effect of Fuel Equivalence Ratio on Scramjet-to-Ramjet Mode Transition (스크램-램제트 모드 천이에 미치는 연료 당량비의 영향)

  • Ha, Jeong Ho;Yoon, Youngbin;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.45-51
    • /
    • 2018
  • The generation mechanism of NAR is not yet understood. In the present study, an in-depth analysis of the computational results previously obtained by the authors is conducted to investigate the flow mechanism responsible for NAR. A theoretical analysis has also been performed to understand the gas dynamic features during transition from scramjet to ramjet mode. It is known that there exists a critical value of the fuel equivalence ratio at which the flow states at the inlet of isolator remain unchanged. An increase in the equivalence ratio over the critical value leads to a sudden change in the static pressure and the Mach number at the inlet of the isolator, which is responsible for the generation of NAR.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Numerical Study on Mode Transition in a Scramjet Engine (스크램제트 엔진에서의 모드 천이에 관한 수치해석 연구)

  • Ha, Jeong Ho;Das, Rajarshi;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.21-31
    • /
    • 2017
  • In the present study, theoretical and numerical analyses have been carried out to investigate the detailed flow characteristics during the mode transition. The theoretical analysis rearranged the knowledge of gasdynamics and the previous studies, and the numerical analysis has conducted to solve the 2D unsteady compressible Navier-Stokes equations with a fully implicit finite volume scheme. To validate the numerical analysis, the experiment was compared with it. The total temperature at the inlet of isolator and the hydrogen fuel equivalent ratio were changed to investigate their effects on the mode transition phenomenon. As the results, the numerical analysis reproduced well the experiment qualitatively, the increment in the hydrogen fuel equivalent ratio induced the scram-mode to ram-mode transition which is discontinuous with a non-allowable region, and the variation in the total temperature changed the boundary of the mode transition.

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.

Modeling and coupling characteristics for an airframe-propulsion-integrated hypersonic vehicle

  • Lv, Chengkun;Chang, Juntao;Dong, Yilei;Ma, Jicheng;Xu, Cheng
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.553-570
    • /
    • 2020
  • To address the problems caused by the strong coupling of an airbreathing hypersonic vehicle's airframe and propulsion to the integrated control system design, an integrated airframe-propulsion model is established, and the coupling characteristics between the aircraft and engine are analyzed. First, the airframe-propulsion integration model is established based on the typical nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle and the one-dimensional dual-mode scramjet model. Thrust, moment, angle of attack, altitude, and velocity are used as transfer variables between the aircraft model and the engine model. The one-dimensional scramjet model can accurately reflect the working state of the engine and provide data to support the coupling analysis. Second, owing to the static instability of the aircraft model, the linear quadratic regulator (LQR) controller of the aircraft is designed to ensure attitude stability and height tracking. Finally, the coupling relationship between the aircraft and the engine is revealed through simulation examples. The interaction between vehicle attitude and engine working condition is analyzed, and the influence of vehicle attitude on engine safety is considered. When the engine is in a critical working state, the attitude change of the aircraft will not affect the engine safety without considering coupling, whereas when coupling is considered, the attitude change of the aircraft may cause the engine unstart, which demonstrates the significance of considering coupling characteristics.