• 제목/요약/키워드: Dual photon accelerator

검색결과 6건 처리시간 0.03초

Mevatron KD 8067 선형가속기의 23 MV 광자선의 특성 (Characteristics of 23 MV Photon Beam from a Mevatron KD 8067 Dual Energy Linear Accelerator)

  • 김옥배;최태진;김영훈
    • Radiation Oncology Journal
    • /
    • 제8권1호
    • /
    • pp.115-124
    • /
    • 1990
  • 고 에너지 23MV광자선의 특성 중 임상적용에 중요한 심부선량 백분율, 조직-최대선량비 (TMR), 산란-최대선량비 (SMR), 표면선량 및 출력선량 보정계수등의 변수가 이온전리 (IC-10)함 및 평행 평판전리 (PS-033)함에 의해 측정 조사되었다. 명목상의 23 MV X-선에 대한 가속에너지는 $18.5\pm0.5$ MV로 측정되었다. Mevatron KD 8067의 23 MV X-선의 중심선속의 반가층이 기하학적인 좁은 선속으로 측정되었으며 반가층의 두께는 $24.5\;g/cm^2$이었다. 조직-최대선량비는 심부선량백분율표에서 구해졌으며, 실측치와 비교한 결과 각 조사면의 크기와 깊이에서 약간의 차이를 보였으나 평균 $0.7\pm0.5$의 오차를 나타내고 있어 계산에 의한 TMR 값과 잘 일치함을 보였다. 조사면 $0\times0\;cm^2$의 TMR 값은 zero 조사면의 유효감약계수에 의한 값과, 각 조사면의 조직-최대 선량비로 부터 비선형최소자승법에 의해 구해진 유효선흡수계수 및 반가층 측정에 의한 유효선흡수 계수에 의한 값들로 비교되었으며, $\mu=0.0283{\pm}0,0002cm^{-1}$을 보였고, 세 방법 모두 오차범위내에서 잘 일치됨을 보였다. 한편, 불규칙 조사면의 선량계산에 이용될 SMR은 조사면의 반경 50cm까지 계산되어 대형 조사 면에서도 선량율 산출이 이루어지도록 하였다. Mevatron KD 8067의 23 MV X-선의 조직 표면선량은 SSD 100 cm, 1$10\times10\;cm^2$의 조사면에서 최대조직선량율의 $9.6\%,\;25\times25\;cm^2$에서는 $25.4\%$를 보였다.

  • PDF

6MV 및 10 MV X-ray의 이중에너지를 생성하는 방사선 발생장치의 임상적 이용 (Clinical Application of the Dual Energy Photon Beam Using 6 MV and 10 MV X-ray)

  • 이명자;한혜경
    • Radiation Oncology Journal
    • /
    • 제6권1호
    • /
    • pp.93-99
    • /
    • 1988
  • 최근에 선형가속기에 대한 제작기술의 발달로 하나의 기계에서 두 가지 X-선이 생성된다. 이러한 기계적 특성을 충분히 이용할 수 있도록 임상적으로 어떠한 장점이 있는지 아는 것은 매우 중요하다. 특히 SAD 방법으로 치료 시 다른 에너지를 사용하여야 될 경우 환자를 다른 에너지가 있는 치료실로 이동시키지 않아도 되는 장점이 있다. 저자는 직장암 환자 15예를 중심으로 6MV와 10MV X-선의 에너지를 복합적으로 사용하여 치료를 하였을 때 단일에너지인 6MV혹은 10MV X-선을 이용했을 때와 등량곡선의 분포도 및 선량률의 차이를 비교하였다. 선량 계산은 치료계획용 Mevaplan 콤퓨터를 이용하였다. 정상조직에 들어가는 방사선량의 차이를 계산하기 위해 방광 및 우측 대퇴부를 임의의 점으로 잡아 콤퓨터에 입력시켜 그 부위의 최대선량 최소선량 및 평균선량을 구하였다. 6MV 및 10MV의 이중에너지 X-선을 이용하였을 때 6MV 단일 에너지 X-선으로 치료시 보다 방광의 평균 방사선량은 $8.1\%$ 감소하였고 방광 평균 방사선량 즉 소장과 근접해 있는 부위는 $7.4\%$의 감소를 보였다. 최대선량치 Dmax는 $1.25\%$감소하였다. 대퇴부위의 평균 방사선량은 $2\%$ 감소하였다. 이중에너지 X-선 치료는 10MV단일에너지와 비교하여 방광의 평균 방사선량은 $8.5\%$ 감소하였고, 소장근접 부위는 $11.8\%$ 감소하였다. 최대선량치 Dmax는 $0.8\%$의 증가로 거의 차이가 없었다. 대퇴부위 방사선량은 $0.8\%$증가로 비슷하였다. 그외 회음부 및 전골전방 부위는 전방조사야에 10MV 대신 6MV를 씀으로써 피부 sparing 효과를 줄여주어 충분한 방사선량을 줄 수 있었다. 위의 결과로 이중에너지 X-선 치료는 정상조직의 손상은 같게 주며 종양부위의 방사선량을 $7\~12\%$정도 올려줄 수 있는 장점이 있음을 알 수 있었다.

  • PDF

Measurement of Bremsstrahlung Radiation with Electron Beam Energy

  • Srivastava, R.P.;Chaurasia, P.P.;Prasiko, G.;Jha, A.K.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.235-236
    • /
    • 2002
  • A Klystron powered dual photon energy electron linear accelerator 2300 C/D from Varian Associates has been installed in our center. From the radiological safety view as well as treatment planning, the output (contamination) of Bremsstrahlung Radiation with electron beam energy determined accurately. It has been found 0.5% to 4.7% with increasing the electron beam energy which is the clinically not much significant in the treatment of the malignant diseases with the treatment of electron beam.

  • PDF

치료 방사선 선속(Flux)에 포함된 산란전자의 분포와 에너지 측정 (The Measurements of Energy and Distribution of Scattered Electrons in Therapeutic X-Ray Beam)

  • Vahc, Young-Woo;Park, Kyung-Ran;Ohyun Kwon;Lee, Yong-Ha;Kim, Tae-Hong;Kim, Sookil
    • 한국의학물리학회지:의학물리
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2002
  • 치료방사선 선형가속기에서 출력되는 광자선의 선속 (flux)에는 gantry head로부터 발생되는 오염전자를 포함하고 있으며, 오염전자의 발생은 주로 gantry head의 부속장비 또는 방사선 치료를 위해 gantry head 밑에 설치되는 부속장치 등에서 광자선과 매질의 전자쌍생성, 또는 컴프톤 산란전자 등의 물리적 현상으로 발생된다. 오염전자는 표면영역의 수cm 깊이의 선량 분포에 영향을 주고 있으며, 이것은 방사선 치료 시 skin-sparing 효과를 감소시키는 등 임상적인 측면에 영향을 주고 있다. 그러므로 선형가속기에서 발생되는 오염전자의 특성을 이해 할 필요가 있다. 본 연구는 선형가속기 (Clinac 1800, Varian )에서 출력되는 15MV 광자 선속에서 조사야의 크기가 0.0$\times$10.0 to 30.0$\times$30.0 $\textrm{cm}^2$에서 30.0$\times$30.0 $\textrm{cm}^2$ 대해 구리판(Cu)의 부분적 오염전자 제거 능력과, 조사야의 부분 차폐 방법을 이용하여 물팬톰 내의 선량분포의 변화를 측정하므로써 오염전자의 특성을 분석하였다. 그 결과 오염전자는 조사야의 중심축으로부터 넓게 퍼진 cone 모양의 분포를 하고 있었으며, 또한 오염전자가 갖는 평균 에너지는 약 3.0MeV로 나타났다. 그러므로 오염전자는 표면으로부터 2.5cm 깊이까지 분포하였다. 이러한 결과로써 광자선속에 포함된 오염전자를 제거하고 순수한 광자선을 이용한다면 buildup 영역 및 표면선량이 감소되고, 최대선량지점이 좀더 깊어진다.

  • PDF

CLINAC 1800 선형가속기의 15 MV X-선의 특성 (Characteristics of 15 MV Photon Beam from a Varian Clinac 1800 Dual Energy Linear Accelerator)

  • 김계준;이종영;박경란
    • Radiation Oncology Journal
    • /
    • 제9권1호
    • /
    • pp.131-141
    • /
    • 1991
  • 국내에서 처음으로 사용되는 CLINAC 1800에서 발생된 15MV X-선의 특성을 구하기 위하여 3 Dimensional water Phantom Dosimetry system)를 이용하여 방사선 치료에 근간이 되는 심부선량 백분율(POD), 최대 조직 비율(TMR), 편평도(beam profile), 대칭도, Wedge인자 등을 측정하였고 선량계산을 위하여 출력 인자들을 구하였다. 1. 선축상 최대치 지점(Dmax)은 SSD 100cm일때 조사면이 $10\times10cm^2$에서 $3.0\pm0.1$ cm이였고 $4\times4cm^2,\;35\times35cm^2$에서 각각 $3.1\pm0.1\;cm,2.2\pm0.1$ cm으로 조사면이 넓어지면서 측정치가 표면에 가까워지는 결과를 보였다. 2. 조직표면 선량(Surface Dose)는 SSD 100cm일때 조사면이 $10\times10cm^2$에서 $15.5\%$이였고 $4\times4cm^2,\;35\times35cm^2$에서 각각 $9.8\%\;,51.2\%$로 조사면이 넓어지면서 표면 선량은 증가하는 결과를 보였다. 3. 심부선량 백분율(PDO)은 SSD 100cm에서 측정하였고 조사면이 $10\times10cm^2$이고 10cm depth에서 $76.8\%$이였고 $80\%,\;50\%$ 선량의 깊이는 각각 $9.1\pm0.1\;cm,19.9\pm0.2\;cm$으로 측정되었다. 4. 최대조직비율(TMR)은 심부선량 백분율(PDD)로부터 계산하였고 측정값과의 차이는 $10\times10cm^2$ 조사면에서 평균 $1\;%$ 이내의 오차를 보였다. 5. 대칭도(symmetry)와 편평도(flatness)는 조사면 $10\times10cm^2$일때 각각 $0.73\%,\;2.72\%$이였다. 6. 출력인자(output factor)는 $10\times10cm^2$ 기준 조사면에서 흡수선량을 1로 하였을때 $4\times4cm^2,\;35\times35cm^2$ 조사면에서는 각각 0.927, 1.087로 측정되었는데 조사면이 증가할수록 흡수량이 증가하는 결과를 보였다. 7. Wedge factor는 $15^{\circ}\;30^{\circ}\;45^{\circ}\;60^{\circ}$를 10cm깊이에서 측정하였는데 0.825, 0.099, 0.560, 0.457로 각각 측정되었고 아크릴 0.4 mm Tray의 투과율은 0.976이였다. 8. 15 MV X-선에 의한 납벽층의 반가층 두께는 13 mm였고 Cerrobend의 반가층은 15.5 mm으로 측정되었다.

  • PDF

조직 불균질성에 의한 고에너지 광자선의 선량변화 (Dose Alterations at the Distal Surface by Tissue Inhomogeneity in High Energy Photon Beam)

  • 김영애;최태진;김옥배
    • Radiation Oncology Journal
    • /
    • 제13권3호
    • /
    • pp.277-283
    • /
    • 1995
  • 목적 : 임상 방사선치료에서 병소선량은 인체 연부조직의 방사선흡수와 유사한 수조펜텀에서 측정환산된 흡수선량자료를 이용하여 얻어지고 있으며, 방사선 치료부위내 공기층 또는 밀도가 낮은 폐조직 주위에 종양이 존재할 경우 공기층과 만나는 종양의 경계면 선량은 rebuild-up에 의해 낮아질 수 있으나 현재까지 연구 발표된 것은 많지 않다. 이에 본 연구에서는 6, 10 메가볼트 광자선을 이용하여 조직 불균질층 경계면 선량을 실험적으로 측정하여 종양선량에 미치는 영향을 분석하여 방사선 치료선량 결정에 이용하고자 하였다. 방법 : 고에너지 광자선의 조사면내 조직 불균질성에 의한 선량변화를 얻기 위하여 조직층에 해당되는 폴리스티렌 고체펜텀의 두께가 각각 10, 30, 50 mm 인 경우 공기층의 두께를 10, 20, 30, 50 mm 로 변화시켜서, 이러한 조직층과 공기층을 지나 종양의 가장자리에 해당되는 수조펜텀의 표면에 도달되는 방사선량을 평행평판형전리함으로 측정하였다. 방사선 조사면적은 임상에서 비교적 많이 이용되는 $5{\times}5,\;10{\times}10,\;20{\times}20\;cm^2$를 사용하였다. 결과 : 방사선 조사면적 $5{\times}5\;cm^2$ 이고 조직층 두께 30 mm 일때 6 메가볼트 광자선에서 공기층 두께변화에 따른 표면선량 변화는 표준선량보다 공기층 10 mm 에서는 $1.1\%$, 50 mm 에서는 $29.1\;\%$ 낮아졌으며 공기층 두께가 두꺼워질수록 방사선량 감소가 현저했다. 같은 조건에서 10 메가볼트 광자선에서 선량변화는 표준선량보다 $4.2\%$에서 $33.9\%$ 까지 낮아졌다. 동일 깊이에서 표준심부선량에 대한 불균질 조직층 선량의 비인 OER 은 조사면적 10{\times}10\;cm^2$ 이상에서는 1 보다 크거나 1 에 가까운 값을 보였다. 결론 : 방사선 조사면적이 커지면 공기층과 인접한 조직 경계면의 선량감소는 거의 나타나지 않으며, $10{\times}10\;cm^2$ 이하의 소조사면 치료시 조직 경계면의 종양에 대한 치료선량 평가에는 rebuild-up 효과를 고려하여야 될 것으로 생각된다. 임상에서 6 메가볼트 광자선을 사용하여 공기층이 존재하는 구강과 인후두 종양을 치료할 때, 공기층에 인접한 점막층 (1-3 mm) 의 선량은 표준선량에 비해 $29\%$ 까지 적게 도달될 수 있으므로 방사선 치료선량 결정에 이러한 곁과를 필히 고려하여야 될 것으로 사료된다.

  • PDF