• Title/Summary/Keyword: Dual energy

Search Result 1,051, Processing Time 0.026 seconds

Modeling and Position-Sensorless Control of a Dual-Airgap Axial Flux Permanent Magnet Machine for Flywheel Energy Storage Systems

  • Nguyen, Trong Duy;Beng, Gilbert Foo Hock;Tseng, King-Jet;Vilathgamuwa, Don Mahinda;Zhang, Xinan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.758-768
    • /
    • 2012
  • This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

A Novel Approach to Enhance Dual-Energy X-Ray Images Using Region of Interest and Discrete Wavelet Transform

  • Ullah, Burhan;Khan, Aurangzeb;Fahad, Muhammad;Alam, Mahmood;Noor, Allah;Saleem, Umar;Kamran, Muhammad
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.319-331
    • /
    • 2022
  • The capability to examine an X-ray image is so far a challenging task. In this work, we suggest a practical and novel algorithm based on image fusion to inspect the issues such as background noise, blurriness, or sharpness, which curbs the quality of dual-energy X-ray images. The current technology exercised for the examination of bags and baggage is "X-ray"; however, the results of the incumbent technology used show blurred and low contrast level images. This paper aims to improve the quality of X-ray images for a clearer vision of illegitimate or volatile substances. A dataset of 40 images was taken for the experiment, but for clarity, the results of only 13 images have been shown. The results were evaluated using MSE and PSNR metrics, where the average PSNR value of the proposed system compared to single X-ray images was increased by 19.3%, and the MSE value decreased by 17.3%. The results show that the proposed framework will help discern threats and the entire scanning process.

Coupled Inductor Based Voltage Balancing in Dual-Output CLL Resonant Converter for Bipolar DC Distribution System (양극성 DC 배전 시스템 적용을 위한 결합 인덕터 기반의 전압 밸런싱 이중 출력 CLL 공진형 컨버터)

  • Lee, Seunghoon;Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.348-355
    • /
    • 2022
  • A bipolar DC distribution system suffers from an imbalance in voltages when asymmetric loads are connected at the outputs. Dedicated voltage balancers are required to address the imbalance in bipolar voltage levels. However, additional components eventually increase the cost and decrease the efficiency and power density of the system. Therefore, to deal with the imbalance in output voltages without adding any extra components, this study presents a coupled inductor-based voltage balancing technique with a dual-output CLL resonant converter. The proposed coupled inductor does not require extra magnetic components to balance the output voltages because it is the result of resonant inductors of the CLL tank circuit. It can also avoid complex control schemes applied to voltage balancing. Moreover, with the proposed coupled inductor, the CLL converter acquires good features including zero voltage and zero current switching. Detailed analysis of the proposed coupled inductor is presented with different load conditions. A 3.6-kW hardware prototype was built and tested to validate the performance of the proposed coupled inductor-based voltage balancing technique.

Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging

  • Cherry Kim;Wooil Kim;Sung-Joon Park;Young Hen Lee;Sung Ho Hwang;Hwan Seok Yong;Yu-Whan Oh;Eun-Young Kang;Ki Yeol Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.838-850
    • /
    • 2020
  • Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.

Response Characteristic of the Dual-frame Passive Control System with the Natural Period Difference between the Strength Resistant Core and Frame Structure (강도저항형 코어와 프레임 구조의 진동주기차를 이용한 듀얼프레임 제진시스템의 응답특성)

  • Kim, Tae Kyung;Choi, Kwang Yong;Oh, Sang Hoon;Ryu, Hong Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.273-282
    • /
    • 2015
  • In this study, shaking table test has been carried out for the dual frame passive control system for seismic performance verification of the proposed system. The proposed system was separated into two independent frameworks that are strength resistant core and frame structure by connecting to the damper. Moreover, the seismic performance improvement of the proposed system has been verified by comparing and analyzing the experimental results of the proposed system with an existing core system. As a result of the shaking table test, acceleration and displacement responses of dual-frame vibration control system are decreased than those of the existing strength resistant type core system. In the case of the core system, while the damage was concentrated on the column of first floor, the damage of the dual system was dispersed in each layer. The damage also was concentrated on the damper, almost no damage occurs to the structural members. It has been emphasized that installed dampers in the proposed dual system reduce the input energy of whole structure by absorbing seismic input energy, which leads overall system damage to be reduced.

Economical Evaluation of a LNG Dual Fuel Vehicle Converted from 12L Class Diesel Engine (12리터급 경유엔진을 개조한 LNG혼소 화물자동차의 경제성 분석)

  • Han, Jeong-Ok;Chae, Jung-Min;Lee, Jung-Sung;Hong, Sung-Ho
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • It was measured engine power, specific fuel consumption and exhaust emissions to analyze fuel economy between LNG dual fuel vehicle and base diesel one. The tested LNG dual fuel engine is converted from diesel engine having 12 liter heavy duty class. The power of LNG dual fuel engine is 5% lower than diesel one and the engine efficiency is also lower than diesel case. However the exhaust emission of diesel engine such as PM, NOx, CO and $CO_2$ showed higher than that of LNG duel fuel case except NMHC component. And economical analysis were carried out two cases for an aspect of fuel economy and environmental benefit. As a result, LNG dual fuel vehicle gives some economic benefit to whom both business party and public side respectively though considering the subsidy and price discount for diesel.

An Economic Analysis on Dual-fuel Engine Generation for Peak Load (피크부하용 혼소엔진발전의 경제성 분석)

  • Lee, Ok-Bae;Ahn, Jae-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1260-1268
    • /
    • 2012
  • Recently, lack of power reserve margin was observed quite often. In this paper, we studied the method to secure power source for a short time, to cut the utility power peak load, and to reduce the users electricity bills. Emergency diesel generator of an office building is to be converted into a dual-fuel engine generator which is responsible for a portion of the peak load. Compared to the conventional diesel fuel generator, the proposed dual-fuel engine is able to reduce the generation power cost by dual-fuel combustion, and it also mitigates the building's utility power peak load by charging the building's peak load. If the dead resources (a group of emergency dual-fuel engine generators), as a Virtual Power Plant, are operating in peak time, we can significantly reduce future large power development costs. We investigated the current general purpose electricity bills as well as the records of the building electric power usage, and calculated diesel engine generator renovation costs, generation fuel costs, driving conditions, and savings in electricity bills. The proposed dual-fuel engine generation method reduces 18.1% of utility power peak load, and turned out to be highly attractive investment alternative which shows more than 27% of IRR, 76 million won of NPV, and 20~53 months of payback periods. The results of this study are expected to be useful to developing the policy & strategy of the energy department.

A Study on the Optimization of Grinding Energy Density for a Non-linear Grinding System with Dual Time Delay (이중 시간지연을 가지는 비선형 연삭기의 가공 에너지 밀도 최적화 연구)

  • Jung, Jeehyun;Kim, Pilkee;Lee, Jung-In;Lee, Sooyoung;Lee, Jong-Hang;Kim, Kyung-Dong;Seok, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.5
    • /
    • pp.493-498
    • /
    • 2013
  • The present study treats the optimization process for a non-linear grinding system with dual time delay, mainly from the energetic viewpoint. To this end, the stability of the grinding system is investigated first with regard to the grinding wheel rotation speed. The concept of grinding energy density is newly proposed as the primary figure of merit and this quantity is evaluated at various stable and limit cycle conditions. The computational results show that simple monotonic trend in energy density is observed under stable conditions, whilst rather complicated behaviors can appear when the conditions are associated with limit cycle oscillations. Finally, the relations between the vibration amplitude and the energy density and their implications on the engineering decision/compromise are discussed.

Simulation Study on Liquid Air Energy Storage (LAES) System using Dual Refrigeration Cycles and Thermal Oil Circulation (냉매사이클과 열매체유 순환을 활용한 액화공기에너지저장 시스템 공정모사 연구)

  • Jang, Soonnam;Park, Jongpo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.63-73
    • /
    • 2018
  • Innovative technical process for Energy Storage System (ESS), Liquid Air Energy Storage system (LAES) is mature technologies based on the gas liquefaction process. In spite of many advantages such as high energy density, no geographical constraints, low investment costs and long useful life, the system has not yet widely commercialized due to low round trip efficiency. To improve RTE and acquire high yield of liquid air, various configurations of LAES process have been considered. In this research, dual refrigerants cycle (R-600a and methanol) for air liquefaction and thermal oil circulation for power generation via liquid air gasification have been applied to improve cycle performance significantly using Aspen HYSYS simulator.

Deriving the Effective Atomic Number with a Dual-Energy Image Set Acquired by the Big Bore CT Simulator

  • Jung, Seongmoon;Kim, Bitbyeol;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.171-177
    • /
    • 2020
  • Background: This study aims to determine the effective atomic number (Zeff) from dual-energy image sets obtained using a conventional computed tomography (CT) simulator. The estimated Zeff can be used for deriving the stopping power and material decomposition of CT images, thereby improving dose calculations in radiation therapy. Materials and Methods: An electron-density phantom was scanned using Philips Brilliance CT Big Bore at 80 and 140 kVp. The estimated Zeff values were compared with those obtained using the calibration phantom by applying the Rutherford, Schneider, and Joshi methods. The fitting parameters were optimized using the nonlinear least squares regression algorithm. The fitting curve and mass attenuation data were obtained from the National Institute of Standards and Technology. The fitting parameters obtained from stopping power and material decomposition of CT images, were validated by estimating the residual errors between the reference and calculated Zeff values. Next, the calculation accuracy of Zeff was evaluated by comparing the calculated values with the reference Zeff values of insert plugs. The exposure levels of patients under additional CT scanning at 80, 120, and 140 kVp were evaluated by measuring the weighted CT dose index (CTDIw). Results and Discussion: The residual errors of the fitting parameters were lower than 2%. The best and worst Zeff values were obtained using the Schneider and Joshi methods, respectively. The maximum differences between the reference and calculated values were 11.3% (for lung during inhalation), 4.7% (for adipose tissue), and 9.8% (for lung during inhalation) when applying the Rutherford, Schneider, and Joshi methods, respectively. Under dual-energy scanning (80 and 140 kVp), the patient exposure level was approximately twice that in general single-energy scanning (120 kVp). Conclusion: Zeff was calculated from two image sets scanned by conventional single-energy CT simulator. The results obtained using three different methods were compared. The Zeff calculation based on single-energy exhibited appropriate feasibility.