• Title/Summary/Keyword: Dual closed-loops control

Search Result 2, Processing Time 0.028 seconds

Improved Dual Closed-loops PWM Control of PM DC Servomotor - a Case Study of Undergraduate Education for Electrical Engineering

  • Cao, Hongtai
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.374-378
    • /
    • 2014
  • PID control method usually has problems of overshoot and oscillation in high order control system, therefore, it is important to improve the control method so as to reduce the overshoot and oscillation. Based on MATLAB simulation, a permanent magnet (PM) DC servomotor control system is studied in this paper. The motor is modeled according to the universal motor theory, and with the help of the fourth order Ronge-Kutta method, its speed control is simulated and compared between two different dual closed-loops PWM control methods. This case study helps undergraduate students to better understand theories related to electrical engineering, such as electrical machinery, power electronics and control theory, as well as digital solution of state equations.

Development of the Control Algorithm for the Small PEM Fuel Cell Stack (소형 PEM 연료전지 스택의 제어 알고리즘 개발)

  • Kim, Tae-Hoon;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.134-141
    • /
    • 2010
  • Small PEM (Proton Exchange Membrane) fuel cell systems do not require humidification and have great commercialization possibilities. However, methods for controlling small PEM fuel cell stacks have not been clearly established. In this paper, a control method for small PEM fuel cell systems using a dual closed loop with a static feedforward structure is defined and realized using a DSP (Digital Signal Processor). The fundamental elements that need to be controlled in fuel cell systems include the supply of air and hydrogen, water management inside the stack, and heat management of the stack. For small PEM fuel cell stacks operated without a separate humidifier, fans are essential for air supply, heat management, and water management of the stack. A purge valve discharges surplus water from the stack. The proposed method controls the fan using double control loops to quicken transient response of the fan thereby improving the supply rate of air. Feedback control to compensate for the voltage change in fuel cell stack improves the response characteristics in fuel cell to load variations. The feasibility of proposed method was proved by the experiments with a 60W small PEM fuel cell system and operation of a notebook computer using this system.