• Title/Summary/Keyword: Dual activity

Search Result 372, Processing Time 0.03 seconds

A new Potential Anti-inflammatory Agent

  • Kim, Hee-Kee;Son, Kun-Ho;Chang, Hyeun-Wook;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.406-410
    • /
    • 1998
  • Biflavonoid is one of unique classes of naturally-occurring bioflavonoids. Certain biflavonoids including amentoflavone were previously reported to have inhibitory effect on the group 11 phospholipase $A_2$ activity. Amentoflavone was also found to inhibit cyclooxygenase from guinea-pig epidermis without affecting lipoxygenase. In this study, anti-inflammatory and analgesic activities of amentoflavone were evaluated. When amentoflavone was administered intraperitoneally, it showed a potent anti-inflammatory activity as determined by amelioration of croton-oil induced mouse ear edema. It also showed a potent anti-inflammatory activity in the rat carrageenan paw edema model ($ED_{50}$=42 mg/kg) compared to the activity of prednisolone (35 mg/kg) and indomethacin (10 mg/kg). However, amentoflavone did not show a significant inhibitory activity against rat adjuvant-induced arthritis, a chronic inflammatory model. In addition, amentoflavone was found to possess a potent analgesic activity in the acetic acid writhing test ($ED_{50}$=9.6 mg/kg) compared to the activity of indomethacin (3.8 mg/kg). These results suggest that amentoflavone may be a potential lead for a new type of anti-inflammatory agents having dual inhibitory activity of group 11 phospholipase $A_2$ and cyclooxygenase.

  • PDF

Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells

  • Ko, Hyun Myung;Jin, Yeonsun;Park, Hyun Ho;Lee, Jong Hyuk;Jung, Seung Hyo;Choi, So Young;Lee, Sung Hoon;Shin, Chan Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.679-688
    • /
    • 2018
  • Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.

Continuous Production of Fructooligosaccharides from Sucrose by a Dual Immobilized Enzyme System of Fructosyltransferase and Glucose Isomerase (과당전이효소와 포도당 이성화 효소의 고정화 혼합효소계에 의한 설탕으로부터 프락토올리고당의 연속생산)

  • 윤종원;서근학송승구
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.9-14
    • /
    • 1995
  • Continuous production of fructooligosaccharides from sucrose by a dual immobilized enzyme system of fructosyltransferase and glucose isomerase was studied in a column reactor. The optimal temperature and pH of the immobilized fructosyltransferase were $65^{\circ}C$ and 5.5, respectively. The activity of glucose isomerase was favorable as temperature and pH were increased within the ranges examined. However, both the immobilized enzymes were thermally unstable over $5^{\circ}C$, suggesting that long-term operation of the dual immobilized enzyme column should be carried out below $50^{\circ}C$. The optimum packing ratio of fructosyltransferase to glucose isomerase was found to be around 5/3. Under the optimized reaction conditions, the dual enzyme column was successfully operated for 40 days without any loss of initial enzyme activities, yielding 66% of fructooligosaccharides. Furthermore, the relative sweetness of fructooligosaccharides produced by a dual emzyme system was enhanced by 6% compared with that of fructosyltransferase alone.

  • PDF

Characterization of Antibacterial activity and Synthesis of Sulfanilamide Polymer using Crosslinking Agent (가교제를 이용한 Sulfanilamide 중합체의 합성과 항균특성)

  • Kim, Jong-Woan;Yoon, Chul-Hun;Hwang, Sung-Kwy;Kong, Seung-Dae;Lee, Han-Seab
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Drug delivery system(DDS) have been actively studied for the past twenty years. Dual action agents are unique chemical entities comprised of two different types of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. In spite of the advent of the antibacterial agent the sulfa agents are the most widely used antibacterial agent today. In this study, new antibacterials derivative was synthesized using glutaraldehyde such as crosslinking agent for the purpose of dual-action as DDS study. Antibacterial activity of these new synthetic derivative between their structures and activities were examined by disc diffusion method. As a result, new synthetic derivative exhibited the broad antibacterial activities against Gram(+) and Gram(-) bacilli. Especially, the antibacterial effect of new synthetic derivative against Gram negative(Esherichia. coli) was much stronger than that against Gram positive.

Development of a High Efficient "Dual Bt-Plus" Insecticide Using a Primary Form of an Entomopathogenic Bacterium, Xenorhabdus nematophila

  • Eom, Seonghyeon;Park, Youngjin;Kim, Hyeonghwan;Kim, Yonggyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.507-521
    • /
    • 2014
  • A phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared with a wild-type primary form, a secondary form usually loses several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in its production of eicosanoid-biosynthesis inhibitors (EBIs) compared with the primary form of X. nematophila. Production of oxindole and p-hydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila enhanced the pathogenicity of Bacillus thuringiensis ( Bt) significantly more than the culture broth of the secondary form. Furthermore, this study developed a highly efficient "Dual Bt-Plus: to control both lepidopteran insect pests Plutella xylostella and Spodoptera exigua, by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.

Species Diversity and Antifungal Activity of Endophytic Fungi Isolated from Angelica gigas Nakai (참당귀에서 분리된 내생균의 다양성과 병원균 억제 효과)

  • Park, Hyeok;Jung, Chung Ryul;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.497-505
    • /
    • 2021
  • Endophytic fungal strains were isolated from leaves, stems, and roots of Angelica gigas. The fungal strains were identified based on their morphological characteristics and molecular analysis of the internal transcribed spacer (ITS). A total 35 species of endophytic fungi were identified. The diversity between the endophytic fungal communities differed depending on the tissues of A. gigas. The isolated endophytic fungi were screened for antifungal activity against a pathogenic fungus, Phoma sp. Y11, using a dual culture method. Fourteen species of endophytic fungi showed the standout inhibition effect against the Y11 strain. The results suggest that the endophytic fungi isolated from A. gigas could be used as a biological control agent against leaf spot disease of A. gigas.

(E)-2-Methoxy-4-(3-(4-Methoxyphenyl) Prop-1-en-1-yl) Phenol Suppresses Breast Cancer Progression by Dual-Regulating VEGFR2 and PPARγ

  • Na-Yeon Kim;Hyo-Min Park;Hee Pom Lee;Jin Tae Hong;Do-Young Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.240-248
    • /
    • 2024
  • In cancer treatment, multi-target approach has paid attention to a reasonable strategy for the potential agents. We investigated whether (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) could exert an anticancer effect by dual-regulating VEGFR2 and PPARγ. MMPP showed modulating effects in TNBC type (MDA-MB-231 and MDA-MB-468) and luminal A type (MCF7) breast cancer cell lines. MMPP enhanced PPARγ transcriptional activity and inhibited VEGFR2 phosphorylation. MMPP-induced signaling by VEGFR2 and PPARγ ultimately triggered the downregulation of AKT activity. MMPP exhibited anticancer effects, as evidenced by growth inhibition, inducement of apoptosis, and suppression of migration and invasion. At the molecular level, MMPP activated pro-apoptotic proteins (caspase3, caspase8, caspase9, and bax), while inhibiting the anti-apoptotic proteins (bcl2). Additionally, MMPP inhibited the mRNA expressions of EMT-promoting transcription factors. Therefore, our findings showed molecular mechanisms of MMPP by regulating VEGFR2 and PPARγ, and suggested that MMPP has potential to treat breast cancer.

Plant Growth Promotion and Suppression of Root Disease Complex due to Meloidogyne incognita and Fusarium oxysporum by Fluorescent Pseudomonads in Tomato

  • Kumar, Tarun;Bajpai, Vivek K.;Maheshwari, Dinesh Kumar;Kang, Sun-Chul
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.79-83
    • /
    • 2005
  • While screening for nematicidal activity of bacterial origins, various pseudomonads strains were inhabited in tomato rhizosphere. One isolate designated as $PE_{10}$ was selected for studies on nematicidal properties and plant growth-promoting (PGP) activity and was identified as Pseudomonas aeruginosa based on morphological features, biochemical and physiological tests, and carbohydrate utilization. To investigate nematicidal activity, Meloidogyne incognita juvenile mortality was determined using $PE_{10}$ culture filtrate. Inhibition of strain $PE_{10}$ against Fusarium oxysporum was observed using dual culture technique. Strain $PE_{10}$ showed good siderophore activity, HCN and IAA production abilities, and growth and development enhancement of tomato.

Sorption of Organic Penetrants by Amorphous Polyamide (비결정 폴리아마이드에 대한 유기화합물의 흡착 특성 연구)

  • Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.4 no.1
    • /
    • pp.11-16
    • /
    • 1997
  • Sorption studies involving the sorption of n-propanol by an Amorphous Nylon(Nylon 6I/6T) were carried out as a function of sorbate vapor activity at $23^{\circ}C$. Vapor activity levels from 0.035 to 0.91 were investigated to evaluate the concentration dependency of sorption mechanism. Sorption behavior of propanol by Nylon 6I/6T showed distinctive two mode sorption phenomena as a function of Vapor activity. At Vapor activity levels below a=0.11, equilibrium sorption was achieved within a short period of time(less than 20hrs), which can be interpreted as following a Fickian diffusion model. A Langmuir-Flory-Muggins Dual Mode Sorption model can also be applied at these concentration levels. However, for Vapor activities above a=0.11, the sorption process appeared to be non-Fickian and resulted in a lack of equilibrium being attained.

  • PDF