• 제목/요약/키워드: Dual Time Stepping Scheme

검색결과 13건 처리시간 0.016초

비정렬 격자상에서 비압축성 유동해석을 위한 음해법에 대한 연구 (A STUDY ON IMPLICIT METHOD FOR SOLVING INCOMPRESSIBLE FLOW WITH UNSTRUCTURED MESHES)

  • 김민규;안형택
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.27-33
    • /
    • 2014
  • A new and efficient implicit scheme is proposed to obtain a steady-state solution in time integration and the comparison of characteristics with the approximation ways for the implicit method to solve the incompressible Navier-Stokes equations is provided. The conservative, finite-volume cell-vertex upwind scheme and artificial compressibility method using dual time stepping for time accuracy is applied in this paper. The numerical results obtained indicate that the direct application of Jacobian matrix to the Lower and upper sweeps of implicit LU-SGS leads to better performance as well as convergence regardless of CFL number and true time step than explicit scheme and approximation of Jacobian matrix. The flow simulation around box in uniform flow with unstructured meshes is demonstrated to check the validity of the current formulation.

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

강한 압력 교란에 구속된 고압 액적의 천이 기화 (Droplet Vaporization in High Pressure Environments with Pressure Oscillations)

  • 김성엽;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF