• Title/Summary/Keyword: Dual Shock Generation System

Search Result 2, Processing Time 0.015 seconds

A Sequential Design of Dual Pulse Generation System Based on Dynamic Analysis of Pulse Shape (이중충격파의 충격파형 동특성 분석에 근거한 충격시험장치의 순차적 설계)

  • Kang, Minsig;Shul, Changwon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.98-107
    • /
    • 2017
  • Electric components equipped with naval shipboards must endure mechanical shock caused by various mechanical impulsive sources. Thus the components must be designed carefully and reliability test is an essential procedure before use. In this study, a new design technology applicable to a large and heavy shock generation system which can generate various specific real mechanical shocks in specified time domain was introduced. Commonly, the shock transmitted through the wall of naval shipboard consists of dual shocks. The primary shock is of a very high amplitude and very short period half-sine form. The following shock is of an exponentially decaying harmonic form of relatively longer period. Based on the different dynamic characteristics of two shocks, we proposed a sequential design procedure to determine spring and damping coefficients of the generation system. Some numerical simulation results showed the feasibility of the proposed method.

Design of Dynamic Characteristics Adjustable Integrated Air Spring-Damper Mechanism for Dual Shock Generation System (동특성 가변형 에어스프링-댐퍼 일체 구조의 이중 충격 발생장치 설계)

  • Yeo, Sung Min;Shul, Chang Won;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.331-341
    • /
    • 2018
  • This study proposes an integrated serial spring-damper mechanism as a dual pulse generation system. Compared to the traditional dual pulse generation system, which used multiple springs and a damper to generate a dual pulse critical for impact testing of naval equipments, currently used separated serial spring-damper mechanism is comprised of two components: an air spring, and a damper. The proposed mechanism combines the two components into one integrated system with a unique design that lets simply changing the volume and the pressure of the air tank, and the length of the annular pipe adjust the stiffness and damping constants for testing, eliminating the need to have multiple sets of air springs and dampers. Simulations using MatLab and Simulink were conducted to verify the feasibility of this design. The results show the potential of an integrated serial spring-damper mechanism as a more convenient and flexible mechanism for dual pulse generation system.