• Title/Summary/Keyword: Dual Resonant Frequency

Search Result 106, Processing Time 0.024 seconds

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

Differential Dual-Frequency Antenna for Wireless Communication

  • Han, Liping;Zhang, Wenmei;Han, Guorui;Ma, Runbo;Li, Li
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.877-879
    • /
    • 2008
  • A novel differential dual-frequency antenna using proximity coupling is proposed. Dual bands are realized by a slot in the ground plane. The lower resonant frequency is controlled by the slot in the ground plane, and the upper resonant frequency is mainly determined by the dimensions of the radiating patch. Measured results show that the proposed antenna can operate at 2.51 GHz and 5.38 GHz.

  • PDF

Dual-Band Circularly Polarized Stack-Ring Antenna

  • Sung, Youngje
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.37-41
    • /
    • 2019
  • A stack-ring configuration is proposed for designing a dual-band circularly polarized (CP) antenna. Each ring generates different resonant frequencies. A good CP performance at both resonant frequencies is achieved by adjusting the relative distance between the two rings. The two operating bands are separated with a small frequency ratio of 1.07. Measured results show that radiation patterns with good CP characteristics are obtained at the two resonant frequencies.

Inverter for Induction Heating using Simultaneous Dual-Frequency Method (동시 이중주파수 구동을 이용한 유도가열용 인버터)

  • Shin, Woo-Seok;Park, Hee-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.554-560
    • /
    • 2011
  • Single-frequency induction heating equipment caused by a hardening heat treatment process of the double investment in the issue and allow the heat treatment process in order to shorten the time from one process to work simultaneously on two kinds of processes that allow Simultaneous Dual Frequency(SDF) drive scheme technology are described. In this paper, we propose a dual way to drive a simultaneous dual-frequency drive scheme has been implemented. Through simulations and experiments, we can obtain the validity of the proposed inverter for dual-frequency control and power control.

Independently-Controlled Dual-Channel LED Driver using LLC Resonant Converter (LLC 공진형 컨버터를 이용한 독립제어 가능한 2 채널 LED 구동회로)

  • Hwang, Min-Ha;Choi, Yoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • The independently regulated dual-output LLC resonant converter using only one power stage and one control IC is proposed in this paper. The conventional dual-output LLC resonant converter requires the extra non-isolated DC/DC converter to obtain the tightly regulated slave output voltage, which results in the low power conversion efficiency and high production costs. On the other hand, since the proposed converter controls the master and slave output voltages by pulse width modulation(PWM) and pulse frequency modulation(PFM), it can achieve tightly regulated dual output voltages without the additional non-isolated DC/DC converter. Therefore, it features a high efficiency and low cost. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a 40W LED driver prototype are presented.

Radiation Characteristics of a Dual Mode Inductor Loaded Patch Antenna (이중 모드 Inductor Loaded 패치 안테나의 방사 특성)

  • Kwak, Eun-Hyuk;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.7
    • /
    • pp.28-34
    • /
    • 2011
  • Radiation characteristics of a dual-mode inductor loaded patch antenna using zeroth order resonance and half wavelength resonance are investigated. The isolation between two radiation patterns from the two different modes is improved by increasing the forward radiation and decreasing the horizontal radiation of half wavelength resonance mode. The frequency difference between the two resonant frequencies increases as the dielectric constant of the antenna substrate decreases and the operating frequency increases.

Dual-function Dynamically Tunable Metamaterial Absorber and Its Sensing Application in the Terahertz Region

  • Li, You;Wang, Xuan;Zhang, Ying
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.252-259
    • /
    • 2022
  • In this paper, a dual-function dynamically tunable metamaterial absorber is proposed. At frequency points of 1.545 THz and 3.21 THz, two resonance peaks with absorption amplitude of 93.8% (peak I) and 99.4% (peak II) can be achieved. By regulating the conductivity of photosensitive silicon with a pump laser, the resonance frequency of peak I switches to 1.525 THz, and that of peak II switches to 2.79 THz. By adjusting the incident polarization angle by rotating the device, absorption amplitude tuning is obtained. By introducing two degrees of regulation freedom, the absorption amplitude modulation and resonant frequency switching are simultaneously realized. More importantly, dynamic and continuous adjustment of the absorption amplitude is obtained at a fixed resonant frequency, and the modulation depth reaches 100% for both peaks. In addition, the sensing property of the proposed MMA was studied while it was used as a refractive index sensor. Compared with other results reported, our device not only has a dual-function tunable characteristic and the highest modulation depth, but also simultaneously possesses fine sensing performance.

Design of Meander Chip Antenna with Gap Stub for Dual-Band(GPS/K-PCS) Operation (갭 스터브가 삽입된 이중 대역(GPS, K-PCS) 미엔더 칩 안테나 설계)

  • Kim Young-Do;Sin Kyung-Sup;Won Chung-ho;Lee Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.217-220
    • /
    • 2004
  • This paper presents design simulation, implementation, and measurement of a miniaturized GPS/K-PCS dual-band LTCC chip antenna for mobile communication handsets. The dimension of LTCC chip antenna is $9mm{\times}15mm{\times}1.2mm$. The lower meander type antenna is to be tuned to the lower frequency (GPS) band and the upper meander antenna with via hole connection is to contribute the higher frequency (K-PCS) band. In order to lowering the resonant frequency for GPS band, two printed modified meander antenna with gap stub is used to integrate with PCS band operation. The measured resonant frequency at GPS band shifts to lower frequency about 100MHz. The measured impedance bandwidth(VSWR $\leq$ 2) are 55MHz and 120MHz at the resonant frequency. respectively.

  • PDF

Dual-band Frequency Selective Surface Bandpass Filters in Terahertz Band

  • Qi, Limei;Li, Chao
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.673-678
    • /
    • 2015
  • Terahertz dual-band frequency selective surface filters made by perforating two different rectangular holes in molybdenum have been designed, fabricated and measured. Physical mechanisms of the dual-band resonant responses are clarified by three differently configured filters and the electric field distribution diagrams. The design process is straightforward and simple according to the physical concept and some formulas. Due to the weak coupling between the two neighboring rectangle holes with different sizes in the unit cell, good dual-band frequency selectivity performance can be easily achieved both in the lower and higher bands by tuning dimensions of the two rectangular holes. Three samples are fabricated, and their dual-band characteristics have been demonstrated by a THz time-domain spectroscopy system. Different from most commonly used metal-dielectric structure or metal-dielectric-metal sandwiched filters, the designed dual-band filters have advantages of easy fabrication and low cost, the encouraging results afforded by these filters could find their applications in dual-band sensors, THz communication systems and other emerging THz technologies.