• Title/Summary/Keyword: Dual PFDs

Search Result 2, Processing Time 0.018 seconds

A Study on the Optimum Design of Charge Pump PLL with Dual Phase Frequency Detectors (두 개의 Frequency Detector를 가지고 있는 Charge Pump PLL 의 최적설계에 관한 연구)

  • Woo, Young-Shin;Jang, Young-Min;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.479-485
    • /
    • 2001
  • In this paper, we introduce a charge pump phase-locked loop (PLL) architecture which employs a precharge phase frequency detector (PFD) and a sequential PFD to achieve a high frequency operation and a fast acquisition. Operation frequency is increased by using the precharge PFD when the phase difference is within $-{\pi}{\sim}{\pi}$ and acquisition time is shortened by using the sequential PFD and the increased charge pump current when the phase difference is larger than ${\pm}{\pi}$. So error detection range of the proposed PLL structure is not limited to $-{\pi}{\sim}{\pi}$ and a high frequency operation and a higher speed lock-up time can be achieved. The proposed PLL was designed using 1.5 ${\mu}m$ CMOS technology with 5V supply voltage to verify the lock in process. The proposed PLL shows successful acquisition for 200 MHz input frequency. On the other hand, the conventional PLL with the sequential PFD cannot operate at up to 160MHz. Moreover, the lock-up time is drastically reduced from 7.0 ${\mu}s\;to\;2.0\;{\mu}s$ only if the loop bandwidth to input frequency ratio is regulated by the divide-by-4 counter during the acquisition process. By virtue of this dual PFDs, the proposed PLL structure can improve the trade-off between acquisition behavior and locked behavior.

  • PDF

(A Dual Type PFD for High Speed PLL) (고속 PLL을 위한 이중구조 PFD)

  • 조정환;정정화
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.16-21
    • /
    • 2002
  • In this paper, a dual type PFD(Phase Frequency Detector) for high speed PLL to improve output characteristics using TSPC(True Single Phase Clocking) circuit is proposed. The conventional 3-state PFD has problems with large dead-zone and long delay time. Therefore, it is not applicable to high-speed PLL(Phase-Locked Loop). A dynamic PFD with dynamic CMOS logic circuit is proposed to improve these problems. But, it has the disadvantage of jitter noise due to the variation of the duty cycle. In order to solve the problems of previous PFD, the proposed PFD improves not only the dead zone and duty cycle but also jitter noise and response characteristics by the TSPC circuit and dual structured PFD circuit. The PFD is consists of a P-PFD(Positive edge triggered PFD) and a N-PFD(Negative edge triggered PFD) and improves response characteristics to increase PFD gain. The Hspice simulation is performed to evaluate the performance of proposed PFD. From the experimental results, it has the better dead zone, duty cycle and response characteristics than conventional PFDs.