• Title/Summary/Keyword: Dual One-Way Ranging

Search Result 3, Processing Time 0.017 seconds

Flight Performance of a Dual One-Way Carrier Phase Ranging Instrument (이중단방향 반송파 거리측정기 비행성능 분석)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • One of the error sources for microwave ranging is the instability of the oscillator that drives the microwave signals. Dual one-way ranging (DOWR) minimizes the oscillator effect by combining two one-way carrier phase signals from two transmitter/receiver instrument. The DOWR is first implemented in the GRACE (Gravity Recovery and Climate Experiment) satellites. Direct evaluation of the DOWR is not possible due to its extremely high accuracy. The flight performance of the GRACE DOWR is analyzed by applying several indirect methods. Comparison with the design noise level is discussed.

  • PDF

Simulation Modeling of Range and Acceleration Measurement Instruments for Satellite Formation Flying (편대비행 위성용 거리 및 가속도 관측기 시뮬레이션 모델링)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is to measure the Earth gravity field with unprecedented accuracy. Its key instruments include inter-satellite ranging systems and three-axis accelerometers. For the preliminary design and requirements analysis, extensive instrument simulation models are developed. These modeling techniques and orbit-gravity field estimation techniques are described.

Gravity Estimation by Using Low-Low Inter-Satellite Tracking Data (저궤도 위성간 추적데이터를 이용한 지구중력장 측정)

  • Kim,Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.58-68
    • /
    • 2003
  • Accurate estimation of the Earth gravity field plays an important role in understanding the Earth geodynamic activities. After brief discussion on the objective of the gravity estimation, dedicated satellite missions for this purpose are described. Recently launched NASA/DLR Gravity Recovery and Climate Experiment (GRACE) mission, which consists of two co-orbiting low altitude satellites, is described. For the performance analysis, full numerical simulation was performed. The simulation procedure and its key instrument modelings are described. From the simulation results, a significant improvement on the Earth gravity field accuracy is expected.