• Title/Summary/Keyword: Dual Counting

Search Result 33, Processing Time 0.022 seconds

The Effects of Arithmetic Task Difficulty level as a Dual Task on the Gait in Post-stroke Patient (뇌졸중 환자에서 이중 과제로서의 산술 과제 난이도가 보행에 미치는 영향)

  • Kim, Min-Suk;Goo, Bong-Oh
    • PNF and Movement
    • /
    • v.7 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • Many daily activities require people to complete a motor task while walking. Substantial gait decrements during simultaneous attention to a variety of cognitive tasks have been shown by a group of severely injured neurological patients of mixed etiology. And previous studies have shown that the attentional load of a walking-associated task increased with its level of difficulty. The purpose of this study was to analyze subjects' gait changes are affected by the effects of arithmetic task difficulty and performance level. Participants performed a walking task alone, three different Arithmetic tasks while seated, and among them, two kinds of the simillar Arithmetic tasks in combination with walking. Reaction time and accuracy were recorded for two of the Arithmetic tasks. The mean values of the gait were measured using a Timed Up and Go test among 11 with post-stroke patients while walking with and without forward counting (WFC) and backward counting(WBC).There was significant Arithmetic Task Difficulty level between the 10-forward counting task condition(FC) and the 10-backward counting task condition(BC)(p=0.008). The mean values of T.U.G time were significantly higher under backward counting dual-task condition than during a simple walking task(p=0.009) and WFC(p=0.009). The change in T.U.G time during WFC was higher when compared with the change during a simple walking, but there was no significant difference (p=0.246). This study suggesting that a high interference could be linked with a high level of difficulty, whereas adaptive task enabled participants to perfectly share their attention between two concurrent tasks. Future research should determine whether dual task training can reduce gait decrements in dual task situations in people after stroke. And the dual-task-based exercise program is feasible and beneficial for improving walking ability in subjects with stroke.

  • PDF

Development of ZnS(Ag)/plastic dual scintillator sheet for simultaneous alpha- and beta-ray counting (알파 및 베타선 동시측정용 ZnS(Ag)/플라스틱 이중섬광체 검출센서 개발)

  • Seo, Bum-Kyoung;Woo, Zu-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Lee, Dong-Gyu;jung, Chong-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • Dual scintillator for simultaneous alpha- and beta-ray counting used by detection materials of a surface contamination monitor was developed. In this study, preparation method was not a heat melting method but a solvent method, by which the counting material was manufactured by dissolving the polymer materials with solvent. It was simplified the preparation process. Plastic scintillator for beta-ray counting was prepared by solidifying the casting solution mixed with organic scintillator, polymer, and solvent. ZnS(Ag) scintillator layer was prepared by screen printing the paste solution mixed with ZnS(Ag), paste, and solvent onto the plastic layer. The good counting ability for alpha- and beta-ray using the ZnS(Ag)/plastic dual scintillator prepared and possibility for the counting material of surface contamination monitor was confirmed.

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF

DEVELOPMENT OF THE DUAL COUNTING AND INTERNAL DOSE ASSESSMENT METHOD FOR CARBON-14 AT NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young;Han, Sang-Jun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.55-64
    • /
    • 2009
  • In a pressurized heavy water reactor (PHWR), radiation workers who have access to radiation controlled areas submit their urine samples to health physicists periodically; internal radiation exposure is evaluated by the monitoring of these urine samples. Internal radiation exposure at PHWRs accounts for approximately 20 $\sim$ 40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Carbon-14 is not a dominant nuclide in the radiation exposure of workers, but it is one potential nuclide to be necessarily monitored. Carbon-14 is a low energy beta emitter and passes relatively easily into the body of workers by inhalation because its dominant chemical form is radioactive carbon dioxide ($^{14}CO_2$). Most inhaled carbon-14 is rapidly exhaled from the worker's body, but a small amount of carbon-14 remains inside the body and is excreted by urine. In this study, a method for dual analysis of tritium and carbon-14 in urine samples of workers at nuclear power plants is developed and a method for internal dose assessment using its excretion rate result is established. As a result of the developed dual analysis of tritium and carbon-14 in urine samples of radiation workers who entered the high radiation field area at a PHWR, it was found that internal exposure to carbon-14 is unlikely to occur. In addition, through the urine counting results of radiation workers who participated in the open process of steam generators, it was found that the likelihood of internal exposure to either tritium or carbon-14 is extremely low at pressurized water reactors (PWRs).

Dual task interference while walking in chronic stroke survivors

  • Shin, Joon-Ho;Choi, Hyun;Lee, Jung Ah;Eun, Seon-deok;Koo, Dohoon;Kim, JaeHo;Lee, Sol;Cho, KiHun
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.134-139
    • /
    • 2017
  • Objective: Dual-task interference is defined as decrements in performance observed when people attempt to perform two tasks concurrently, such as a verbal task and walking. The purpose of this study was to investigate the changes of gait ability according to the dual task interference in chronic stroke survivors. Design: Cross-sectional study. Methods: Ten chronic stroke survivors (9 male, 1 female; mean age, 55.30 years; mini mental state examination, 19.60; onset duration, 56.90 months) recruited from the local community participated in this study. Gait ability (velocity, paretic side step, and stride time and length) under the single- and dual-task conditions at a self-selected comfortable walking speed was measured using the motion analysis system. In the dual task conditions, subjects performed three types of cognitive tasks (controlled oral word association test, auditory clock test, and counting backwards) while walking on the track. Results: For velocity, step and stride length, there was a significant decrease in the dual-task walking condition compared to the single walking condition (p<0.05). In particular, higher reduction of walking ability was observed when applying the counting backward task. Conclusions: Our results revealed that the addition of cognitive tasks while walking may lead to decrements of gait ability in stroke survivors. In particular, the difficulty level was the highest for the calculating task. We believe that these results provide basic information for improvements in gait ability and may be useful in gait training to prevent falls after a stroke incident.

Material Decomposition through Weighted Image Subtraction in Dual-energy Spectral Mammography with an Energy-resolved Photon-counting Detector using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 광자계수검출기 기반 이중에너지 스펙트럼 유방촬영에서 가중 영상 감산법을 통한 물질분리)

  • Eom, Jisoo;Kang, Sooncheol;Lee, Seungwan
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.443-451
    • /
    • 2017
  • Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

The Dual-Channel, Pulse-Counting Pierce-Blitzstein Photometer-The PBPHOT: Our Last Paper with Bob Koch, and Additional Technical History

  • Ambruster, Carol;Hull, Tony;Koch, Robert H.;Mitchell, Rich;Wolf, George;Smith, Bob
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.195-198
    • /
    • 2012
  • The dual channel Pierce-Blitzstein photometer (PBPHOT) was productively used at the Flower and Cook Observatory to provide 60 years of study of binary systems and other cosmic objects. We review the history of this instrument, discuss its calibration, and recall some personal and professional interactions with Professor Robert H. Koch.

Semiautomated Analysis of Data from an Imaging Sonar for Fish Counting, Sizing, and Tracking in a Post-Processing Application

  • Kang, Myoung-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Dual frequency identification sonar (DIDSON) is an imaging sonar that has been used for numerous fisheries investigations in a diverse range of freshwater and marine environments. The main purpose of DIDSON is fish counting, fish sizing, and fish behavioral studies. DIDSON records video-quality data, so processing power for handling the vast amount of data with high speed is a priority. Therefore, a semiautomated analysis of DIDSON data for fish counting, sizing, and fish behavior in Echoview (fisheries acoustic data analysis software) was accomplished using testing data collected on the Rakaia River, New Zealand. Using this data, the methods and algorithms for background noise subtraction, image smoothing, target (fish) detection, and conversion to single targets were precisely illustrated. Verification by visualization identified the resulting targets. As a result, not only fish counts but also fish sizing information such as length, thickness, perimeter, compactness, and orientation were obtained. The alpha-beta fish tracking algorithm was employed to extract the speed, change in depth, and the distributed depth relating to fish behavior. Tail-beat pattern was depicted using the maximum intensity of all beams. This methodology can be used as a template and applied to data from BlueView two-dimensional imaging sonar.

Photon-Counting Detector CT: Key Points Radiologists Should Know

  • Andrea Esquivel;Andrea Ferrero;Achille Mileto;Francis Baffour;Kelly Horst;Prabhakar Shantha Rajiah;Akitoshi Inoue;Shuai Leng;Cynthia McCollough;Joel G. Fletcher
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.854-865
    • /
    • 2022
  • Photon-counting detector (PCD) CT is a new CT technology utilizing a direct conversion X-ray detector, where incident X-ray photon energies are directly recorded as electronical signals. The design of the photon-counting detector itself facilitates improvements in spatial resolution (via smaller detector pixel design) and iodine signal (via count weighting) while still permitting multi-energy imaging. PCD-CT can eliminate electronic noise and reduce artifacts due to the use of energy thresholds. Improved dose efficiency is important for low dose CT and pediatric imaging. The ultra-high spatial resolution of PCD-CT design permits lower dose scanning for all body regions and is particularly helpful in identifying important imaging findings in thoracic and musculoskeletal CT. Improved iodine signal may be helpful for low contrast tasks in abdominal imaging. Virtual monoenergetic images and material classification will assist with numerous diagnostic tasks in abdominal, musculoskeletal, and cardiovascular imaging. Dual-source PCD-CT permits multi-energy CT images of the heart and coronary arteries at high temporal resolution. In this special review article, we review the clinical benefits of this technology across a wide variety of radiological subspecialties.

A Systematic Review of the Application Dual Task Assessment for Screening Mild Cognitive Impairment (경도 인지장애 선별에 적용된 이중과제 평가에 대한 체계적 고찰)

  • Kim, Sunho;Kwak, Hosoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.4
    • /
    • pp.107-115
    • /
    • 2020
  • Purpose: This study aims to systematically review the dual-task evaluation applied to the screening of mild cognitive impairment. It also aims to present various evaluation items and results analysis methods for dual tasks applied to patients with mild cognitive impairment. Methods: We conducted a systematic search of published studies in PubMed databases and KISS from January 2000 to August 2020 using the main keywords such as "Dual task," "Mild Cognitive impairment," "Elderly," and "Screening." We selected a total of 10 studies for the analysis from 1314 searched articles. Results: We analyzed the qualitative level of 10 studies that were nonrandomized two-group studies with evidence level II (100.0%). These results suggest that the evidence level of the studies was high. We analyzed 10 studies and identified 12 motor tasks and 19 cognitive tasks. Walking was the most commonly used evaluation motor task and counting backward by ones and naming animals were the most commonly used evaluation cognitive tasks. Moreover, the velocity speed was the most used result analysis method. The results indicate that there were significant differences in dual-task performance between patients with normal and mild cognitive impairment. Conclusion: The results of this study can be used as a basis for the selection of dual-task evaluation items and methods of analyzing the results for screening mild cognitive impairment. Furthermore, they are expected to be used for research on the development of dual-task evaluation tools. It is necessary to compare and analyze the usage trends of dual-task evaluation by cultural differences in future studies.