• Title/Summary/Keyword: Dual Coil Antenna

Search Result 5, Processing Time 0.016 seconds

Noise Reduction in an Inductively Coupled RFID System Using a Dual Coil Antenna (유도결합 RFID 시스템에서 이중 코일 안테나를 이용한 잡음의 감소)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.648-655
    • /
    • 2007
  • In this paper, we introduce a dual coil antenna which is useful for reducing the effects of radio frequency noise in an RFID system. A dual coil antenna is composed of two identical coils that are connected in series. The noise voltages in the two coils almost disappear when they are added because the magnitudes are equal and the polarities are opposite. The noise in an RFID reader with a dual coil antenna was 15 dB lower than that with a single coil antenna.

RFID Noise Reduction Using a Multi-Coil Antenna (다중 코일 안테나를 이용한 RFID 유도 잡음의 감소)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.603-611
    • /
    • 2008
  • In this paper, we introduce a multi-coil antenna which is useful for reducing the effects of radio frequency noise in an inductively coupled RFID system. A multi-coil antenna is composed of a central coil and four subsidiary coils that are connected in series. A multi-coil antenna is designed so that the total noise disappear when the induced voltages of a central coil and subsidiary coils are added. The noise in a multi-coil antenna was about 30 dB lower than that in a single coil antenna. The multi-coil antenna is very effective in noise reduction even in an environment that the spatial distribution of RF noise is changed abruptly, and the induced noise was about 16 dB lower than that in a dual coil antenna.

A Single-Feeding Port HF-UHF Dual-Band RFID Tag Antenna

  • Ha-Van, Nam;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.233-237
    • /
    • 2017
  • In this paper, a dual-band high frequency (HF) and ultra-high frequency (UHF) radio-frequency identification (RFID) tag antenna is presented that operates in the 13.56 MHz band as well as in the 920 MHz band. A spiral coil along the edges of the antenna substrate is designed to handle the HF band, and a novel meander open complementary split ring resonator (MOCSRR) dipole antenna is utilized to generate the UHF band. The dual-band antenna is supported by a single-feeding port for mono-chip RFID applications. The antenna is fabricated using an FR4 substrate to verify theoretical and simulation designs, and it has compact dimensions of $80mm{\times}40mm{\times}0.8mm$. The proposed antenna also has an omnidirectional characteristic with a gain of approximately 1 dBi.

Design of HF-UHF dual Band Tag Antenna (HF-UHF RFID 이중대역 태그 안테나 설계)

  • Yoon, Nanae;Nam, Havan;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.75-79
    • /
    • 2015
  • In this paper, a dual band antenna with the operating frequency in HF and UHF band was proposed. The antenna structure consists of three spiral turns coil in the bottom side to generate the HF frequency of 13.56 MHz. In the top of the antenna, an inverted-spiral dipole structure is used to create the UHF frequency of 922 MHz. The dual band antenna was optimized to reduce size with $80mm{\times}40mm{\times}0.8mm$ dimension. The antenna presents the omnidirectional characteristic with high gain. To validate the theoretical design, the antenna was simulated using FR-4 substrate and verified the simulation results.

Etch rate uniformity control by current ratio of dual coil at 300 mm wafer etcher (300 mm 웨이퍼용 식각 장비에서 병렬 안테나의 전류비 조절에 의한 식각 균일도 측정)

  • Hong, Gwang-Gi;Choe, Ji-Seong;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.155-155
    • /
    • 2011
  • Dual coil을 사용하는 상용 AMAT DPS II 300 mm Centura 장비의 antenna의 전류비를 조절하여 $SiO_2$의 식각 균일도를 평가하였다. Inner turn과 outer turn의 흐르는 전류비를 분배 capacitor로 조절하여 16.9 %의 이온 전류 밀도 분포를 확인하였고, 투입 전력에 따라 200 W에서 12 %, 800 W에서 9 %로 점차 감소하는 경향을 확인하였다. 이때 300 mm wafer의 반지름 방향으로의 식각 균일도는 3 %로 측정되었고, FRC (flow ratio control)는 0.5에서 가장 균일한 결과를 얻었다.

  • PDF