• Title/Summary/Keyword: Dual $O_2$ sensor

Search Result 16, Processing Time 0.019 seconds

초고속복합분자펌프 제어기 개발

  • O, Hyeong-Rok;Lee, In-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.99-99
    • /
    • 2012
  • 본 개발에서는 초고속복합분자펌프 구동을 위한 디지털 구동장치를 설계하였다. BLDC구동을 위한 디지털 제어 시스템의 핵심제어 보드 설계 및 모듈 설계를 하여 보드제작 및 기본성능평가를 하고 고속 회전 실험을 하였다. AMB제어기는 넓은 제어대역폭을 확보하기 위하여 FPGA 1개와 마이크로 콘트롤러 2개를 사용하여 구성하였으며 FPGA로 AMB구동을 위한 PWM기능과 CPU 2개의 원활한 Data 통신을 위하여 Dual Memory을 구현하였으며 PWM의 디지털노이즈 회피를 위하여 AMB구동용 PWM과 동기화하여 Gap Sensor 및 전류센서신호 샘플링할 수 있도록 ADC를 구동 및 샘플링한다. 그리고 Gap Sensor 구동 회로와 제어기회로를 하나의 보드로 구연하였다.

  • PDF

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

Responses of SnO2-based Sensors for Oxidizing Gases (산화성 가스에 대한 SnO2모물질 가스센서의 감지특성)

  • 정해원;박희숙;김종명;윤기현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.973-980
    • /
    • 2003
  • The effects of additives in n-type semiconducting SnO$_2$-based gas sensors on oxidizing gases were investigated. The resistivity of SnO$_2$ sensors decreased when exposed to reducing gases, which act as electronic donors. However, the resistivities of the SnO$_2$ sensors increased when exposed to oxidizing gases, which act as electronic accepters. The products formed from the reaction of oxidizing gases ever SnO$_2$-based powders were analyzed by gas chromatography as compared with those formed from the reaction of reducing gases of alcohols. The SnO$_2$ sensors doped with PdCl$_2$ or A1$_2$O$_3$ showed unique dual response patterns toward oxidizing gases of $CH_3$CN and $CH_3$NO$_2$ depending on the operating temperature. The combination of these two sensors along with proper pattern recognition technique could enhance the selectivity for the gases with electron-accepting groups.

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

Characteristics of a planar Bi-Sb multijunction thermal converter with Pt-heater (백금 히터가 내장된 평면형 Bi-Sb 다중접합 열전변환기의 특성)

  • Lee, H.C.;Kim, J.S.;Ham, S.H.;Lee, J.H.;Lee, J.H.;Park, S.I.;Kwon, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.154-162
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter with high thermal sensitivity and small ac-dc transfer error has been fabricated by preparing the bifilar thin film Pt-heater and the hot junctions of thin film Bi-Sb thermopile on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-diaphragm, which functions as a thermal isolation layer, and the cold junctions on the dielectric membrane supported with the Si-substrate, which acts as a heat sink, and its ac-dc transfer characteristics were investigated with the fast reversed dc method. The respective thermal sensitivities of the converter with single bifilar heater were about 10.1 mV/mW and 14.8 mV/mW in the air and vacuum, and those of the converter with dual bifilar heater were about 5.1 mV/mW and 7.6 mV/mW, and about 5.3 mV/mW and 7.8 mV/mW in the air and vacuum for the inputs of inside and outside heaters, indicating that the thermal sensitivities in the vacuum, where there is rarely thermal loss caused by gas, are higher than those in the air. The ac-dc voltage and current transfer difference ranges of the converter with single bifilar heater were about ${\pm}1.80\;ppm$ and ${\pm}0.58\;ppm$, and those of the converter with dual bifilar heater were about ${\pm}0.63\;ppm$ and ${\pm}0.25\;ppm$, and about ${\pm}0.53\;ppm$ and ${\pm}0.27\;ppm$, respectively, for the inputs of inside and outside heaters, in the frequency range below 10 kHz and in the air.

  • PDF

Single-axis Hardware in the Loop Experiment Verification of ADCS for Low Earth Orbit Cube-Satellite

  • Choi, Minkyu;Jang, Jooyoung;Yu, Sunkyoung;Kim, O-Jong;Shim, Hanjoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.195-203
    • /
    • 2017
  • A 2U cube satellite called SNUGLITE has been developed by GNSS Research Laboratory in Seoul National University. Its main mission is to perform actual operation by mounting dual-frequency global positioning system (GPS) receivers. Its scientific mission aims to observe space environments and collect data. It is essential for a cube satellite to control an Earth-oriented attitude for reliable and successful data transmission and reception. To this end, an attitude estimation and control algorithm, Attitude Determination and Control System (ADCS), has been implemented in the on-board computer (OBC) processor in real time. In this paper, the Extended Kalman Filter (EKF) was employed as the attitude estimation algorithm. For the attitude control technique, the Linear Quadratic Gaussian (LQG) was utilized. The algorithm was verified through the processor in the loop simulation (PILS) procedure. To validate the ADCS algorithm in the ground, the experimental verification via a single axis Hardware-in-the-loop simulation (HILS) was used due to the simplicity and cost effectiveness, rather than using the 3-axis HILS verification (Schwartz et al. 2003) with complex air-bearing mechanism design and high cost.