• Title/Summary/Keyword: Dtg

Search Result 136, Processing Time 0.029 seconds

A Study on the Combustion Characteristics of Food Waste Using the Experimental Apparatus for Combustibility (소형 연소장치를 이용한 음식폐기물 연소 특성 연구)

  • Chae, JongSeong;Yang, SeungJae;Kim, SeokWan;Lee, JaeHee;Ohm, TaeIn
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.47-53
    • /
    • 2020
  • The amount of food waste and its water content depends on both the season and region. In particular, the water content typically varies between 73.8 wt.% and 83.3 wt.%, depending on the proportion of vegetables. Current food waste drying technologies are capable of reducing the water content to less than 10 wt.%, while increasing the heating value. Ongoing studies aim to utilize dried food waste as fuel. Food waste can be used to produce solid refuse fuel (SRF) by mixing it with various solid fuels or other types of waste. The analysis of specimens is very important when considering the direct combustion of food waste or its co-firing with solid fuels. In this study, the weight reduction of specimens after burning them in a small combustor, and compared with the results of thermogravimetric analysis (TGA). The concentration of various chemicals was also measured to define the characteristics of waste generation. Performed proximate analysis, elemental analysis, TGA, combustion experiment, the heating value, and derivative thermogravimetry (DTG).

Non-isothermal Decomposition Kinetics of a New High-energy Organic Potassium Salt: K(DNDZ)

  • Xu, Kangzhen;Zhao, Fengqi;Song, Jirong;Ren, Xiaolei;Gao, Hongxu;Xu, Siyu;Hu, Rongzu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2259-2264
    • /
    • 2009
  • A new high-energy organic potassium salt, 2-(dinitromethylene)-1,3-diazepentane potassium salt K(DNDZ), was synthesized by reacting of 2-(dinitromethylene)-1,3-diazepentane (DNDZ) and potassium hydroxide. The thermal behavior and non-isothermal decomposition kinetics of K(DNDZ) were studied with DSC, TG/DTG methods. The kinetic equation is $\frac{d{\alpha}}{dT}$ = $\frac{10^{13.92}}{\beta}$3(1 - $\alpha$[-ln(1 - $\alpha$)]$^{\frac{2}{3}}$ exp(-1.52 ${\times}\;10^5$ / RT). The critical temperature of thermal explosion of K(DNDZ) is $208.63\;{^{\circ}C}$. The specific heat capacity of K(DNDZ) was determined with a micro-DSC method, and the molar heat capacity is 224.63 J $mol^{-1}\;K^{-1}$ at 298.15 K. Adiabatic time-to-explosion of K(DNDZ) obtained is 157.96 s.

Analysis of Surface Tracking of Micro and Nano Size Alumina Filled Silicone Rubber for High Voltage AC Transmission

  • Loganathan, N.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.345-353
    • /
    • 2013
  • This paper discusses the experimental results in an effort to understand the tracking and erosion resistance of the micro and nano size $Al_2O_3$ filled silicone rubber (SIR) material which has been studied under the AC voltages, with ammonium chloride as a contaminant, as per IEC 60587 test procedures. The characteristic changes in the tracking resistance of the micro and nano size filled specimens were analyzed through leakage current measurement and the eroded masses were used to evaluate the relative erosion and tracking resistance of the composites. The fundamental, third and fifth harmonic of the leakage current during the tracking study were analyzed using moving average current technique. It was observed that the harmonic components of leakage current show good correlation with the tracking and erosion resistance of the material. The thermogravimetry-derivative thermo gravimetric (TG-DTG) studies were performed to understand the thermal degradation of the composites. The physical and chemical studies were carried out by using scanning electron microscope (SEM), Energy Dispersive X-ray analysis (EDAX) and Fourier Transform Infra-red (FTIR) Spectroscopy. The obtained result indicated that the performance of nano filled SIR was better than the micro filled SIR material when the % wt. of filler increased.

USN, M2M 서비스 융합과 발전 전망

  • Lee, Seong-Hyeon;Nam, Dong-Gyu
    • Information and Communications Magazine
    • /
    • v.28 no.9
    • /
    • pp.3-9
    • /
    • 2011
  • 본고에서는 급속히 성장하고 있는 M2M 서비스의 융합과 발전을 위해 어떤 걸림돌이 있으며, 무엇을 준비해야 하는지에 대해 알아보고자 한다. 지난 1T839 정책에서 3대 인프라의 하나로 정의된 USN이 본격 확산에 미흡했던 사항에는 어떤 것들이 있었으며 당시 기술적인 환경과 서비스 사례를 통해 2% 부족했던 것들은 되짚어 보고, USN이 현재 시점에 가지는 의미를 찾아보고자한다. USN 서비스가 활성화 되던 시점에 M2M의 기반기술이라고 할 수 있는 (W)CDMA 등 광역 무선망 기술과의 접목이 어려웠던 부분과 USN의 다양한 근거리 무선 네트워크 기술들이 USN 서비스를 완벽히 구현하고 확산까지 갈 수 없었던 미흡했던 이유를 알아보고자 한다. 또한 M2M의 시작배경에는 어떠한 의미가 있으며, 현재에서 바라본 M2M은 시작과 비교해서 달라진 점이 무엇이며 현재에 요구되는 M2M은 무엇인지에 대해 논의해보고자 한다. 이와 함께 M2M의 다양한 정의와 현재의 M2M을 비교해보고 M2M이 급속히 증가하고 있는 이유들을 찾아본다. M2M 서비스를 크게 나누면 텔레매틱스와 텔레매트리로 나눌 수 있으며 최근에는 차량 관련된 분야에 M2M 서비스가 급속히 증가되고 있는데 해외의 eCall 서비스와 국내의 DTG 연계 M2M 서비스, 국가위험물관리 등 국내외 차량관련 M2M 서비스 사례를 분석해 보고, RFID/USN+LBS+M2M의 융복합 서비스 진화에 대해 알아보고자 한다. 끝으로 M2M 시대의 시대적 요구사항을 반영하여 M2M의 활성화를 위해서 필요한 공공과 민간의 역할을 짚어보고, 우리가 준비해야할 것에 대해 제언하고자 한다.

Texture, Morphology and Photovoltaic Characteristics of Nanoporous F:SnO2 Films

  • Han, Deok-Woo;Heo, Jong-Hyun;Kwak, Dong-Joo;Han, Chi-Hwan;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.93-97
    • /
    • 2009
  • The nanoporous $F:SnO_2$ materials have been prepared through the controlled hydrolysis of fluoro(2-methylbutan-2-oxy)di(pentan-2,4-dionato)tin followed by thermal treatment at $400-550^{\circ}C$. The main IR features include resonances at 660, 620 and 540 cm-1. From the TG-DTG result, three main mass losses of 6.5, 13.3 and 3.8 at 81, 289 and $490^{\circ}C$ are observed between 50 and $650^{\circ}C$ yielding a final residue of 76.0%. The size of Sn $O_2$ nanoparticles rose from 5 nm to 10-12 nm as the temperature of thermal treatment is increased from 400 to $550^{\circ}C$.

Factors Affecting the Grafting of Aminopropyltriethoxysilane in Swelling Clay Materials (Clay의 Aminopropyltriethoxysilane 그라프트에 영향을 미치는 인자)

  • Shanmugharaj, A.W.;Lee, Kyong-Yop;Ryu, Sung-Hun
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.238-244
    • /
    • 2006
  • Functionalization of montmorillonite clay has been done using 3-aminopropyltriethoxy silane using water as a dispersing medium. Qualitative evidence of the presence or silane attached to the clay surface has been identified using Fourier transform infrared spectroscopy (FT-IR). Increase in silane concentration decreases the adsorbed/intercalated ratio calculated using differential thermogravimetric analysis (DTG). Average d-spacing calculated using X-ray diffraction initially increases with silane concentration and decreases slightly at higher silane concentration. The influence of processing temperature on the silane functionalization of clay has also been investigated and it shows that chemical grafting of silane on the clay surface is observed with increasing processing temperature.

Kinetic Analysis for the Catalytic Pyrolysis of Polyethylene Terephthalate Over Cost Effective Natural Catalysts

  • Pyo, Sumin;Hakimian, Hanie;Kim, Young-Min;Yoo, Kyung-Seun;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.706-710
    • /
    • 2021
  • In the current research, thermal and catalytic thermogravimetric (TG) analysis of polyethylene terephthalate (PET) over natural zeolite (NZ), olivine, bentonite, HZSM-5, and HAl-MCM-41 were investigated using a TG analyzer and model-free kinetic analysis. Catalytic TG analysis of PET was carried out at multi-heating rates, 10, 20, 30, and 40 ℃/min, under nitrogen atmosphere. Apparent activation energy (Ea) values for the thermal and catalytic pyrolysis of PET were calculated using Flynn-Wall-Ozawa method. Although natural catalysts, NZ, olivine, and bentonite, could not lead the higher PET decomposition efficiency than synthetic zeolites, HZSM-5 and HAl-MCM-41, maximum decomposition temperatures on the differential TG (DTG) curves for the catalytic pyrolysis of PET, 436 ℃ over olivine, 435 ℃ over bentonite, and 434 ℃ over NZ, at 10 ℃/min, were definitely lower than non-catalytic pyrolysis. Calculated Ea values for the catalytic pyrolysis of PET over natural catalysts, 177 kJ/mol over olivine, 168 kJ/mol over bentonite, and 171 kJ/mol over NZ, were also not lower than those over synthetic zeolites, however, those were also much lower than the thermal decomposition, suggesting their feasibility as the proper and cost-effective catalysts on the pyrolysis of PET.

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Synthesis, spectral, thermal, structural study and theoretical treatment of new complexes of mannich base with Ni(II) and study of cytotoxicity effect on (Hepa-2) cell line and antimicrobial activity

  • Omar H. Al-Obaidi
    • Analytical Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2023
  • The synthesis of the Mannich base as a ligand (L) N-(morpholino (phenyl) methyl) acetamide is the subject of this study. Elemental analyses, FT-IR spectra, UV-vis, 1H-NMR, and magnetic measurements were used to confirm the synthesis of the [Ni(L)2]Cl2 complex, thermal analysis (TG/DTG), atomic absorption, and scanning, and structurally explained as electron microscopy (SEM), and X-ray powder diffraction (XRD) methods. The melting point of the complex and its molar conductivity were also measured. The suggested geometries of the complexes formed have a tetrahedral structure, according to the data acquired using various techniques. Theoretical approaches to the complex formation have been investigated. For molecular mechanics and semi-empirical calculations, the HYPERCHEM6 program had been used. The effect of the novel Ni(II) complex on the cancer cell Hepa-2 (human hepatocellular ademocarcinoma), that is the human laryngeal cancer, was studied. It has been found that these ligand and complex have potent effects on the cancer cell. The antibacterial activity of the free ligand and its complex was evaluated against two kinds of human pathogenic bacteria. The first category is Gram-positive (Staphylococcus aureas, epiderimids), whereas the second group is Gram-negative (Psedamonas aeruginosa, Escherichia coli) (from the diffusion method). Finally, it was discovered that various chemicals had varied growth-inhibiting effects on bacteria.

Quantitative Analysis of Hydrate products of the Cement Paste Mixed with Admixtures (혼화재 혼입 시멘트 페이스트의 수화생성물 정량 분석)

  • Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.176-177
    • /
    • 2021
  • In order to compensate for the defects of concrete made using only Portland cement, three-component powder mixed with blast slag and fly ash, and four-component powder concrete mixed with silica fume are being produced. When each of the admixtures is used alone, the above-described excellent performance is expressed and up to 70% of the powder is used. These technologies are also contributing to the reduction of greenhouse gases under Act on Low Carbon. Green Growth. However, calcium hydroxide is consumed as a stimulator or reaction in the case of silica fume, which causes latent hydroponicity of slag, pozzolane reaction, and silica mixtures represented by fly ash. It is known that the consumption of calcium hydroxide affects the alkalinity of concrete. As a result, the carbonation resistance is significantly lower among the durability of concrete. Research on quantification of such effects is insufficient. In this study, an experiment was conducted to quantify calcium hydroxide of the three-component and four-component powder paste using thermal analysis equipment (DTG), and the effect of the mixing amount was discussed.

  • PDF