• Title/Summary/Keyword: Dryland ecosystem

Search Result 6, Processing Time 0.021 seconds

Dust and sandstorm: ecosystem perspectives on dryland hazards in Northeast Asia: a review

  • Kang, Sinkyu;Lee, Sang Hun;Cho, Nanghyun;Aggossou, Casmir;Chun, Jungwha
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.228-236
    • /
    • 2021
  • Background: A review of the literature was carried out to study dust and sandstorm (DSS) in terms of its ecosystem processes and relationship to other dryland disasters in Northeast Asia. Drylands are ecosystems that include grasslands, semi-deserts, and deserts, and these types of ecosystems are vulnerable due to their low primary productivity that depends on a small amount of precipitation. Results: Drought, dust, desertification, and winter livestock disasters (called dzud) are unique natural disasters that affect the region. These disasters are related in that they share major causes, such as dryness and low vegetation cover that combine with other conditions, wind, cold waves, livestock, and land-surface energy, to dramatically impact the ecosystem. Conclusions: The literature review in this study illustrates the macroscopic context of the spatial and temporal patterns of DSS according to geography, climate, and vegetation growth in the drylands of Northeast Asia. The effects of ocean climates and human activities were discussed to infer a possible teleconnection effect of DSS and its relations to desertification and dzud.

Potentials of and Threats to Traditional Institutions for Community Based Biodiversity Management in Dryland Areas of Lower Moshi, Tanzania

  • Woiso, Dino Andrew;Shemdoe, Riziki Silas;Kayeye, Heri
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.177-185
    • /
    • 2009
  • Dryland species and ecosystems have developed unique strategies to cope with low and sporadic rainfall. They are highly resilient and recover quickly from prevailing disturbances such as fires, herbivore pressure and drought. Dryland people have engineered pastoral and farming systems, which are adapted to these conditions and have sustained the livelihoods of dryland people for centuries. In this article, we present the status of potentials and threats to dryland biodiversity and explore options for its conservation and sustainable use. Findings of the research can be summarized as follows: (i) The ecosystem goods and services are highly valued by the community but mechanism for wise use of the resources has disappeared, (ii) forests are under the ownership of the government but the local community is the realistic custodian of the forests through village leaderships and environmental committees; (iii) the immediate major threat to dryland biodiversity held in the forests appears to be the degradation of ecosystems and habitats caused by new and powerful forces of environmental degradation such as large scale irrigation of rice farms, poverty-induced overexploitation of natural resources, and disappearance and ignorance of traditional institutions for management of dryland biodiversity. These new forms of disturbances often overpower the legendary resilience of dryland ecosystems and constitute potentially serious threats to dryland biodiversity. Forests, wetlands and oases all of which are micro hot spots of dryland biodiversity, appear to be particularly vulnerable hence the need to set up some rules and regulations for sustainable utilization of these resources.

  • PDF

Identification of Culturable Bioaerosols Collected over Dryland in Northwest China: Observation using a Tethered Balloon

  • Chen, Bin;Kobayashi, Fumihisa;Yamada, Maromu;Kim, Yang-Hoon;Iwasaka, Yasunobu;Shi, Guang-Yu
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.172-180
    • /
    • 2011
  • The transfer of microorganisms is important process for ecosystems. Microorganisms in dryland can transport itself to wetland through atmospheric diffusion, but only few papers reported about the atmospheric bioaerosol present over dryland. We carried out the direct sampling using a tethered balloon over Dunhuang City, China's northwestern dryland. Bioaerosols were collected using a tethered balloon with a bioaerosol collector at 820 m above the ground (1,960 m above the sea level) around noon on August 17, 2007. The bioaerosols were cultured after the collection at Dunhuang Meteorological observatory. Two strains of molds were isolated using the Nutrient agar medium. About 400-bp 18S rRNA partial sequences were amplified by PCR and determined afterwards. The results of a homology search by 18S rRNA sequences of isolates in DNA databases (GenBank, DDBJ, and EMBL) and an observation of the form revealed that two bioaerosols in the convective mixed layer over Dunhuang City were Cladosporium sp. and Aspergillus sp.

On the use of alternative water use efficiency parameters in dryland ecosystems: a review

  • Kang, Wenping;Kang, Sinkyu
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.246-253
    • /
    • 2019
  • Background: Water use efficiency (WUE) is an indicator of the trade-off between carbon uptake and water loss to the atmosphere at the plant or ecosystem level. Understanding temporal dynamics and the response of WUE to climatic variability is an essential part of land degradation assessments in water-limited dryland regions. Alternative definitions of and/or alternative methodologies used to measure WUE, however, have hampered intercomparisons among previous studies of different biomes and regions. The present study aims to clarify semantic differences among WUE parameters applied in previous studies and summarize these parameters in terms of their definition and methodology. Additionally, the consistency of the responses of alternative WUE parameters to interannual changes in moisture levels in Northeast Asia dryland regions (NADRs) was tested. Results: The literature review identified more than five different WUE parameters defined at leaf and ecosystem levels and indicates that major conclusions regarding the WUE response to climatic variability were partly inconsistent depending on the parameters used. Our demonstration of WUE in NADR again confirmed regional inconsistencies and further showed that inconsistencies were more distinct in hyper- and semi-arid climates than in arid climates, which might reflect the different relative roles of physical and biological processes in the coupled carbon-water process. Conclusions: The responses of alternative WUE parameters to drying and wetting may be different in different regions, and regionally different response seems to be related to aridity, which determines vegetation coverage.

Assessing removal effects on particulate matters using artificial wetland modules (인공 습지 모형을 활용한 습지의 미세먼지 저감 효과)

  • Son, Ga Yeon;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2020
  • To assess the wetland systems' capability to reduce fine dust, we used an artificial wetland module of small-sized greenhouse (70cm W × 70cm L × 60cm H) which creates a closed system. Experiment was performed twice using four species in each experiment. Non-plantation, one species, or two species condition was created in each mesocosm. We measured air quality, primarily PM2.5 and PM10 at the initial open mesocosms and 1hr later since mesocosms were closed. The dry weight of vegetation was measured at the 2nd experiment. The decreased amount of PM2.5 and PM10 was 13.7±1.3 and 13.2±1.3 ㎍·m-3hr-1 in wetland condition and 15.0±1.4 and 13.8±1.5 ㎍·m-3hr-1 in dryland condition, respectively. In 2nd experiment, the decreased amount of PM 2.5 and PM 10 in wetland condition was 13.7±1.3 and 9.2±1.5 ㎍·m-3hr-1, 15.0±1.4 and 8.8±1.4 ㎍·m-3hr-1 in dryland condition, respectively. Wetland showed higher removal effect due to its high productivity leading to more effective absorption of particulate matter. Furthermore, the aquatic characteristics of wetland system and high humidity helped purifying the air quality. This can be seen as another value of wetlands, which can be presented as one of the solutions to the problem of fine dust.

Rainfed Areas and Animal Agriculture in Asia: The Wanting Agenda for Transforming Productivity Growth and Rural Poverty

  • Devendra, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.122-142
    • /
    • 2012
  • The importance of rainfed areas and animal agriculture on productivity enhancement and food security for economic rural growth in Asia is discussed in the context of opportunities for increasing potential contribution from them. The extent of the rainfed area of about 223 million hectares and the biophysical attributes are described. They have been variously referred to inter alia as fragile, marginal, dry, waste, problem, threatened, range, less favoured, low potential lands, forests and woodlands, including lowlands and uplands. Of these, the terms less favoured areas (LFAs), and low or high potential are quite widely used. The LFAs are characterised by four key features: i) very variable biophysical elements, notably poor soil quality, rainfall, length of growing season and dry periods, ii) extreme poverty and very poor people who continuously face hunger and vulnerability, iii) presence of large populations of ruminant animals (buffaloes, cattle, goats and sheep), and iv) have had minimum development attention and an unfinished wanting agenda. The rainfed humid/sub-humid areas found mainly in South East Asia (99 million ha), and arid/semi-arid tropical systems found in South Asia (116 million ha) are priority agro-ecological zones (AEZs). In India for example, the ecosystem occupies 68% of the total cultivated area and supports 40% of the human and 65% of the livestock populations. The area also produces 4% of food requirements. The biophysical and typical household characteristics, agricultural diversification, patterns of mixed farming and cropping systems are also described. Concerning animals, their role and economic importance, relevance of ownership, nomadic movements, and more importantly their potential value as the entry point for the development of LFAs is discussed. Two examples of demonstrated success concern increasing buffalo production for milk and their expanded use in semi-arid AEZs in India, and the integration of cattle and goats with oil palm in Malaysia. Revitalised development of the LFAs is justified by the demand for agricultural land to meet human needs e.g. housing, recreation and industrialisation; use of arable land to expand crop production to ceiling levels; increasing and very high animal densities; increased urbanisation and pressure on the use of available land; growing environmental concerns of very intensive crop production e.g. acidification and salinisation with rice cultivation; and human health risks due to expanding peri-urban poultry and pig production. The strategies for promoting productivity growth will require concerted R and D on improved use of LFAs, application of systems perspectives for technology delivery, increased investments, a policy framework and improved farmer-researcher-extension linkages. These challenges and their resolution in rainfed areas can forcefully impact on increased productivity, improved livelihoods and human welfare, and environmental sustainability in the future.