• Title/Summary/Keyword: Dry storage facility

Search Result 26, Processing Time 0.028 seconds

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

Review of Aging Management for Concrete Silo Dry Storage Systems

  • Donghee Lee;Sunghwan Chung;Yongdeog Kim;Taehyung Na
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.531-541
    • /
    • 2023
  • The Wolsong Nuclear Power Plant (NPP) operates an on-site spent fuel dry storage facility using concrete silo and vertical module systems. This facility must be safely maintained until the spent nuclear fuel (SNF) is transferred to an external interim or final disposal facility, aligning with national policies on spent nuclear fuel management. The concrete silo system, operational since 1992, requires an aging management review for its long-term operation and potential license renewal. This involves comparing aging management programs of different dry storage systems against the U.S. NRC's guidelines for license renewal of spent nuclear fuel dry storage facilities and the U.S. DOE's program for long-term storage. Based on this comparison, a specific aging management program for the silo system was developed. Furthermore, the facility's current practices-periodic checks of surface dose rate, contamination, weld integrity, leakage, surface and groundwater, cumulative dose, and concrete structure-were evaluated for their suitability in managing the silo system's aging. Based on this review, several improvements were proposed.

Assessment of seismic load incident angle effects on structural integrity of a spent nuclear fuel dry storage facility (지진하중 입사각이 사용후핵연료 건식 저장시설의 구조건전성에 미치는 영향 분석)

  • Dong-Hyeon Kwak;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • This study aims to assess the effect of postulated seismic loads on the structural integrity of a spent nuclear fuel dry storage facility. Firstly, three-dimensional modal and response spectrum analyses were carried out. With regard to the latter analysis, the effect of incident angles against two horizontal and one vertical response spectra was also considered. Results showed that even though two critical locations were predicted at the longitudinal axis central part of upper flow path as well as the end discontinuity part of upper and lower flow paths connector, their maximum principal stress values were less than the tensile strength. Moreover, since the influence of vertical angle was 87% higher than that of horizontal angle in particular, which should be carefully handled to demonstrate integrity of the facility.

Evaluation of Neutron Flux Accounting for Shadowing Effect Among the Dry Storage Casks (경수로 사용후핵연료 건식저장용기 간 중성자 표면선속 간섭률 평가)

  • Min Woo Kwak;Shin Dong Lee;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • The Korean 2nd basic plan for management of high-level radioactive waste presented a plan to manage spent nuclear fuel through dry storage facilities in NPP on-site. For the construction and operation of the facility, it is necessary to develop the monitoring system of the integrity of spent nuclear fuel before operation. NUREG-1536 recommends that the theoretical cask array, typically in the 2×10 array, should account for shadowing effect among the dry storage casks. The objective of this study was to evaluate neutron flux accounting for shadowing effect among dry storage casks. The neutron release rate was evaluated using ORIGEN based on the design basis fuel condition. And the simulation of dry storage casks and evaluation of the shadowing effect were performed using MCNP. Shadowing effect of other dry storage casks was the highest at the center of the dry storage facility of the 2×10 array compared with the outside of the cask. The shadowing effect of neutron flux on the surface among the metal casks was approximately 18% at point 1, 23% at point 2, and 43% at point 3. For the concrete casks, the shadowing effect of neutron flux on the surface was approximately 46% at point 1, 51% at point 2, and 52% at point 3. This means that correction is necessary to monitor the integrity of spent nuclear fuel in each dry storage cask through evaluation of shadowing effect. The results of this study will be used for comparative analysis of neutron measurement data from spent nuclear fuels in dry storage cask. Additionally, the neutron flux evaluation procedure used in this study could be used as the basic data of safety assessment of dry storage cask and development of safety guide.

Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition

  • Yoon, Suji;Park, Kwangheon;Yun, Hyungju
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.205-214
    • /
    • 2021
  • Currently, the interim storage pools of spent fuels in South Korea are expected to become saturated from 2024. It is required to prepare an operation plan of a domestic dry storage facility during a long-term period, with the researches on safety evaluation methods. This study modified the FRAPCON code to predict the spent fuel integrity evaluation such as the axial cladding temperature, the hoop stress and hydrogen distribution in dry storage. The cladding temperature in dry storage was calculated using the COBRA-SFS code with the burnup information which was calculated using the FRAPCON code. The hoop stress was calculated using the ideal gas equation with spent fuel information such as rod internal pressure. Numerical analysis method was used to calculate the degree of hydrogen diffusion according to the hydrogen concentration and temperature distribution during a dry storage period. Before 50 years of dry storage, the cladding temperature and hoop stress decreased rapidly. However, after 50 years, they decreased gradually and the cladding temperature was below 400 K. The initial temperature distribution and hydrogen concentration showed a parabolic line, but hydrogen was transferred by the hydrogen concentration and temperature gradient over time.

Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility (조립식 저류형 침투시설의 설계 및 공간적용 효과분석)

  • Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

CONSIDERATIONS REGARDING ROK SPENT NUCLEAR FUEL MANAGEMENT OPTIONS

  • Braun, Chaim;Forrest, Robert
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.427-438
    • /
    • 2013
  • In this paper we discuss spent fuel management options in the Republic of Korea (ROK) from two interrelated perspectives: Centralized dry cask storage and spent fuel pyroprocessing and burning in sodium fast reactors (SFRs). We argue that the ROK will run out of space for at-reactors spent fuel storage by about the year 2030 and will thus need to transition centralized dry cask storage. Pyroprocessing plant capacity, even if approved and successfully licensed and constructed by that time, will not suffice to handle all the spent fuel discharged annually. Hence centralized dry cask storage will be required even if the pyroprocessing option is successfully developed by 2030. Pyroprocessing is but an enabling technology on the path leading to fissile material recycling and burning in future SFRs. In this regard we discuss two SFR options under development in the U.S.: the Super Prism and the Travelling Wave Reactor (TWR). We note that the U.S. is further along in reactor development than the ROK. The ROK though has acquired more experience, recently in investigating fuel recycling options for SFRs. We thus call for two complementary joint R&D project to be conducted by U.S. and ROK scientists. One leading to the development of a demonstration centralized away-fromreactors spent fuel storage facility. The other involve further R&D on a combined SFR-fuel cycle complex based on the reactor and fuel cycle options discussed in the paper.

Development of Spent Nuclear Fuel Transportation Worker Exposure Scenario by Dry Storage Methods (건식 저장방식별 사용후핵연료 운반 작업자 피폭시나리오 개발)

  • Geon Woo Son;Hyeok Jae Kim;Shin Dong Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Currently, there are no interim storage facilities and permanent disposal facilities in Korea, so all spent nuclear fuels are temporarily stored. However, the temporary storage facility is approaching saturation, and as a measure to this, the 2nd Basic Plan for the Management of High-Level Radioactive Waste presented an operation plan for dry interim storage facilities and dry temporary storage facilities on the NPP on-site. The dry storage can be operated in various ways, and to select the optimal dry storage method, the reduction of exposure for workers must be considered. Accordingly, it is necessary to develop a worker exposure scenario according to the dry storage method and evaluate and compare the radiological impact for each method. The purpose of this study is to develop an exposure scenario for workers transporting spent nuclear fuel by dry storage method. To this end, first, the operation procedure of the foreign commercial spent nuclear fuel dry storage system was analyzed based on the Final Safety Analysis Report (FSAR). 1) the concrete overpack-based system, 2) the metal overpack-based system, and 3) the vertical storage module-based system were selected for analysis. Factors were assumed that could affect the type of work (working distance, working hours, number of workers, etc.) during transportation work. Finally, the work type of the processes involved in transporting spent nuclear fuel by dry storage method was set, and an exposure scenario was developed accordingly. The concrete overpack method, the metal overpack method, and the vertical storage module method were classified into a total of 31, 9, and 23 processes, respectively. The work distance, work time, and number of workers for each process were set. The product of working hours and number of workers (Man-hour) was set high in the order of concrete overpack method, vertical storage module method, and metal overpack method, and short-range work (10 cm) was most often applied to the concrete overpack method. The results of this study are expected to be used as basic data for performing radiological comparisons of transport workers by dry storage method of spent nuclear fuel.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

The information system concept for thermal monitoring of a spent nuclear fuel storage container

  • Svitlana Alyokhina
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3898-3906
    • /
    • 2023
  • The paper notes that the most common way of handling spent nuclear fuel (SNF) of power reactors is its temporary long-term dry storage. At the same time, the operation of the dry spent fuel storage facilities almost never use the modern capabilities of information systems in safety control and collecting information for the next studies under implementation of aging management programs. The author proposes a structure of an information system that can be implemented in a dry spent fuel storage facility with ventilated storage containers. To control the thermal component of spent fuel storage safety, a database structure has been developed, which contains 5 tables. An algorithm for monitoring the thermal state of spent fuel was created for the proposed information system, which is based on the comparison of measured and forecast values of the safety criterion, in which the level of heating the ventilation air temperature was chosen. Predictive values of the safety criterion are obtained on the basis of previously published studies. The proposed algorithm is an implementation of the information function of the system. The proposed information system can be used for effective thermal monitoring and collecting information for the next studies under the implementation of aging management programs for spent fuel storage equipment, permanent control of spent fuel storage safety, staff training, etc.