• Title/Summary/Keyword: Dry sliding

Search Result 190, Processing Time 0.029 seconds

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

Investigations on Relationship between Fractal Dimension and 3-D Surfaces Topography of C.G. Irons under Dry Sliding

  • Yongzhen, Zhang;Gesen, Sun;Lemin, Sun;Weimin, Liu;Bao, Shangguan;Yue, Chen
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.253-254
    • /
    • 2002
  • Based on 3-D surface morphology measurements of C.G. irons, the fractal analyses were made on relationship between dry sliding surface morphology and the fractal dimension. It is revealed that the values of fractal dimensions ($D_f$) of sliding surfaces are in the range between 1-2, which are closely related to the surface morphologies. With the increase in depths of grooves or pits, the $D_f$ values increase. At the same time, the increases in densities of the grooves also cause the $D_f$ values to increase. At last, relationship among $D_f$ and friction coefficient as well as wear rate is discussed.

  • PDF

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

A Tribological Study of SiC-Steel Couples (탄화규소-강 미끄럼에서의 마모특성)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • The wear behavior of SiC in SiC-steel sliding couple was investigated under various wear test conditions, such as solid state sliding - dry and wet air atmosphere - or lubricated sliding, sliding velocity and at-mosphere temperature. The effect of SiC fabrication process on the SiC wear rate was also studied under varying sliding velocities. Humidity of air plays a lubricating role in the solid state sliding, while the wear behavior is largely influenced by the sliding velocity, especially if the atmosphere is extremely dry. The fa-brication process of SiC and the surface roughness result in different wear rate depending on the magnitude of sliding velocity. High temperature is, among others, the most deteriorating factor of wear, thus being strongly wear-accelerating even under boundary lubrication.

  • PDF

Sliding Wear Behavior of Pure Metal, Fe and Cu Having a Cubic Crystal System (입방정계 순 금속 Fe, Cu의 미끄럼 마멸 거동)

  • Yi, S.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.357-362
    • /
    • 2010
  • Dry sliding wear behavior of pure Fe and Cu which have BCC and FCC crystal structure, respectively, was investigated. The wear characteristics of the pure metals with different crystal structure were compared. Dry sliding wear tests were carried out using a pin-on-disk wear tester at various loads under the constant sliding speed condition of 0.15 m/s against a silica ball at room temperature. Sliding distance was fixed as 600 m for all wear tests. Wear rate of a specimen was calculated by dividing the weight loss of the specimen after the test by the specific gravity and sliding distance. Worn surfaces and wear debris were analyzed by SEM. The wear of both pure Fe and Cu proceeded with surface deformation, resulting in similar wear rates despite of their structure difference under the current test conditions. Wear rates of both metals were low if the surface deformation due to wear forms thick surface-deformation layer that is strain hardened beneath the wearing surface. The pure Cu specimens showed a lot of oxides on the worn surface when tested at low loads less than 5 N, which resulted in very low wear rate.

Effect of Stress History on Friction and Wear of Metals in Dry and Boundary Lubricated Conditions (건조 및 경계윤활 조건에서 응력이력에 따른 금속재료의 마찰 마멸 특성)

  • 황동환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04a
    • /
    • pp.93-98
    • /
    • 1996
  • Friction and wear characteristics of metals in dry and boundary lubricated sliding conditions are observed experimentally using pin-on-disk and pin-on-plate type tribotesters. The motivation of this research is to investigate the effect of sliding history on the tribological behavior of metals. Cu and SM45C steel materials were used for the experiment. The results show that in dry condition the fictional behavior as well as wear of the specimens differed between uni-directional and bi-directional sliding conditions. The friction coefficient values, wear profile and optical micrograph of the wear track are presented.

  • PDF

Dry Sliding Tribological Characteristics of SiC Particle-reinforced Aluminum Composites in Brakes

  • Yue, Chen;Baolin, Dai;Bao, Shangguan;Yongzhen, Zhang;Lemin, Sun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.417-418
    • /
    • 2002
  • The dry sliding tribological characteristics were investigated using SiC particle-reinforced aluminum composites against semi-metallic frictional materials. The experimental results have indicated that, whether under the condition of continuous braking or not, the wear rates of SiC particle reinforced composites are much less than that of gray cast iron which is used as one of the common brake disk materials. At the same time, their frictional coefficients are about the same.

  • PDF

Wear and friction characteristics of a carbon fiber composite against specular counterpart (탄소 섬유 복합재의 경면 상대재에 대한 마찰 및 마모 특성)

  • YANG BYEONG-CHUN;KOH SUNG-WI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.390-394
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite were selected. Wren sliding took place against smooth and hard counterpart, the highest wear resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

  • PDF

Sliding wear behavior of electro-pressure sintered cobalt (통전 가압 소결된 Co 소결체의 마멸 거동)

  • Kang S. H.;Kim T.-W.;Kim Y.-S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.218-221
    • /
    • 2004
  • Dry sliding wear behavior of electro-pressure sintered Co, $Co-20\;wt.\%$ CuSn and $Co-20\;wt.\%$ WC composites were investigated. Wear tests of the materials were carried out using a pin-on-disk wear tester at various loads of 10N-100N under a constant sliding speed condition of 0.38m/s against glass ($83\%\;SiO_2$) beads. Sliding distances were varied with a range of $100m{\sim}600m$. A scanning electron microscopy was used to examine morphologies of worn surfaces, cross-sections, and wear debris. The $Co-20\;wt.\%$ WC composite had the highest and the $Co-20\;wt.\%$ CuSn composite showed the lowest wear resistance among the tested materials. All specimens exhibited low friction coefficients ranging from 0.12 to 0.4 at the applied load of 100N.

  • PDF

Wear Behavior as Hardness Difference of Material in the Dry Sliding Wear Tests of Using Leaf-Spring (판스프링을 사용한 건식마모실험에서 재료경도에 따른 마모거동)

  • Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.27-33
    • /
    • 2008
  • It is shown that the rate of wear can be related to 'index of wear intensity' using a leaf-spring in the disc on disk on wear tests. Since both upper and lower specimens have used the same hardness values, equivalent hardness of 'the index of wear intensity' used the mean hardness value of specimens. This index is derived from the external variables of load, sliding speed and the hardness of the sliding pairs. The wear behavior as the hardness of the sliding elements on the dry wear has been investigated using a disc on disc configuration. The materials of the specimens are used as ten kinds along their hardness. Using experimental data, we figured the relationship between wear rate and index of wear intensity. A newly wear equation had been derived the result using a leaf-spring in disc on disc wear system.