• Title/Summary/Keyword: Dry river

Search Result 451, Processing Time 0.032 seconds

Prolonged Turbidity of the Lower Nakdong River in 2003

  • Kim, Dong-Kyun;Kim, Hyun-Woo;Kim, Gu-Yeon;Kim, Young-Sang;Kim, Myoung-Chul;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.44-53
    • /
    • 2005
  • The Nakdong River, which lies in a monsoon climate zone with warm rainy summers and cold dry winters, is a typical ecosystem showing the attributes of a regulated river. In 2003, the total annual rainfall (1,805 mm) was higher than the average of the past nine years from 1994 to 2002 (1,250 mm). In September a powerful typhoon, Maemi, caused a big impact on the limnology of the river for over two months. Among the limnological variables, turbidity in 2003 (37.4 ${\pm}$ 94.1 NTU, n = 54) was higher than the annual average for ten years (18.5 ${\pm}$ 2.3 NTU, n = 486) in the lower part of the river (Mulgum: RK 28). Furthermore, physical disturbance (e.g. stream bank erosion within channel) in the upstream of the Imha Dam (RK ca. 350; river distance in kilometer from the estuary barrage) in the upper part of the river was a source of high turbidity, and impacted on the limnological dynamics along a 350 km section of the middle to lower part of the river. After the typhoon, high turbidity persisted more than two months in the late autumn from September to November in 2003. Flow regulation and the extended duration of turbid water are superimposed on the template of existing main channel hydroecology, which may cause spatial changes in the population dynamics of plankton in the river.

A study on comparison and analysis of chlorophyll sensor with aceton extraction for chlorophyll measurement in the Nakdong River (낙동강에서 클로로필(Chlorophyll) 측정을 위한 클로로필 센서와 아세톤 추출법의 비교분석에 관한 연구)

  • Park, Joo-Hyun;Lee, Kyoung-Jin;Cho, Jae-Won;Jeon, Sook-Lye;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.325-335
    • /
    • 2015
  • Concerns about water quality in the Nakdong River have been raised because the Nakdong River will change from a lotic environment to a lentic environmental due to the installation of eight weirs to be constructed as part of the Four Major Rivers Restoration Project. The rapid urbanization and industrialization of the middle and the lower reaches of Nakdong River causes the indiscreet discharge of uncleanly living sewage and industrial wastewater. And the water quality of lower reaches of Nakdong River is getting seriously worse. Owing to the water shortage of Nakdong River and the closing of reaches because of the estuary dyke in the dry season, the velocity of a moving fluid is almost accumulated under 0.03m/sec. Then a pollutant is piled up on the bottom of the river. Polluted sediment is formed and nutrition level of water is increased more and more. The eutrophication state propagated to dark brown or green from eutrophication often comes out. Therefore in this study, we measured Chl. a of chlorophyll sensor (YSI6600V2) and aceton extraction through field observation in the Nakdong River and Samrangjin. And we evaluated the reliability of chlorophyll sensor. In correlation analysis between chlorophyll sensor and aceton extraction, it shows high relation in general. And it also shows high relation among the chlorophyll sensor and aceton extraction of the dominant diatom (Skeletonema costatum), Dinophyta (Prorocentrum minimum) in the Nakdong River estuary by laboratory analysis results.

Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea

  • Jung, Seung Won;Kwon, Oh Youn;Yun, Suk Min;Joo, Hyoung Min;Kang, Jung-Hoon;Lee, Jin Hwan
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • To understand the effects of fluctuations in dam discharge due to river environments and phytoplankton communities, we monitored such environments and phytoplankton communities biweekly, from February 2001 to February 2002 and from February 2004 to February 2005, in the lower Han River (LHR), South Korea. The phytoplankton abundance during the dry season was approximately two times higher than that during the rainy season. In particular, fluctuations in diatom assemblages, which constituted over 70% of the total phytoplankton abundance, were affected severely by the changes in the discharge. When a large quantity of water in a dam was discharged into the LHR, the conductivity and the concentrations of total nitrogen (TN), total phosphorus (TP), and dissolved inorganic phosphorus (DIP) decreased rapidly, whereas the concentrations of suspended solids (SS), dissolved inorganic nitrogen (DIN), and dissolved silica (DSi) increased immediately. Time-delayed relationship also revealed that the dam discharge had an immediately significant negative relationship with phytoplankton abundance. On the whole, fluctuations in phytoplankton communities in the LHR were influenced much more by hydrodynamics such as dam discharge than by the availability of nutrients. Thus, the variability in these concentrations usually parallels the strength of river flow that is associated with summer rainfall, with higher values during periods of high river discharge.

Water Allocation Policy and its Implications in the Waikato Region

  • Brown, Edmund
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.11-17
    • /
    • 2012
  • The Waikato River is New Zealand's longest River, though relatively small on international scales. It drains the central North Island and has New Zealand's largest lake (Lake Taupo) at its headwaters. The upper reaches have sustained flows fed by large aquifers which are recharged by rainfall events providing relatively constant river flows, whereas the lower reaches respond more directly to rainfall events having more peaky flows after rainfall and extreme low flows during dry periods. Consumptive allocation from the river is relatively low with only about 3% of the mean annual flow being allocated. However, more than seven times the river's flow is allocated for non-consumptive purposes before discharging to the Tasman Sea. The majority of this non-consumptive allocation is for hydro power generation and as cooling water at both thermal and geothermal power stations which produce up to 25% of New Zealand's electricity. The upper half of the river has been heavily modified with the construction of eight dams for power generation. This has resulted in a succession of cascading dams replacing the previously uncontrolled river. The Waikato River also provides drinking water for Auckland City (NZ's largest city) and Hamilton City (NZ's 4th largest city). In recent years there has also been considerable growth in water requirements for pasture irrigation to support the intensification of dairy farming in the catchment. Operators of the power stations are concerned that any further consumptive allocation will further reduce their ability to generate electricity. The Waikato Regional Council, who is charged with managing the river and allocation of water, has recently set new rules for managing the conflicting allocation demands on the Waikato River. This has resulted in an end to further allocation of water where it results in a loss of water for electricity generation from renewable resources (fresh water and geothermal water). The exception to this is the prioritisation of water for municipal supplies ahead of other consumptive uses such as industries and irrigators.

  • PDF

Soil Loss and Pollutant Load Estimation in Sacheon River Watershed using a Geographic Information System (GIS를 이용한 동해안 하천유역의 토양유실량과 오염부하량 평가 -사천천을 중심으로-)

  • Cho, Jae-Heon;Yeon, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1331-1343
    • /
    • 2000
  • Through the integration of USLE and GIS, the methodology to estimate the soil loss was developed, and applicated to the Sacheon river in Gangrung. Using GIS, spatial analysis such as watershed boundary determination, flow routing. slope steepness calculation was done. Spatial information from the GIS application was given for each grid. With soil and land use map, information about soil classification and land use was given for each grid too. Based upon these data, thematic maps about the factors of USLE were made. We estimated the soil loss by overlaying the thematic maps. In this manner, we can assess the degree of soil loss for each grid using GIS. Annual average soil loss of Sacheon river watershed is 1.36 ton/ha/yr. Soil loss in forest, dry field, and paddy field is 0.15 ton/ha/yr, 27.04 ton/ha/yr, 0.78 ton/ha/yr respectively. The area of dry field, which is 4% of total area, is $2.4km^2$. But total soil loss of dry field is 6561 ton/yr, and it occupies 84.9 % of total soil loss eroded in Sacheon river watershed. Comparing with the 11.2 ton/ha/yr of an average soil loss tolerance for cropland, provision for the soil loss in dry field is necessary. Run-off and water quality of Sacheon river were measured two times in flood season: from July 24, 1998 to July 28 and from September 29 to October 1. As the run-off of the river increased, SS, TN, TP concentrations and pollutant loadings increased. SS, TN, TP loads of Sacheon river discharged during the 2 heavy rains were 21%, 39%, and 19% of the total pollutant loadings generated in the Sacheon river watershed for one year. We can see that much pollutants are discharged in short period of flood season.

  • PDF

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

A Case Study on Dry Stream Protection Design Using Causes Analysis of the Dry Stream Weakness Section (하천 건천화 취약구간 원인 분석을 통한 방지 대책: 설계사례)

  • Yoo, Chan-Ho;Park, Se-Young;Kang, Moon-Gu;Hwang, Jung-Soon;Oh, Byung-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1494-1501
    • /
    • 2008
  • Recently, the demand of water resources is constantly increasing due to the substantial increase of population, economy, and living standard. However, it is expected that the water resources should undergo serious problems of poor quality of water as well as shortage of water supply in the near future. Additionally, thoughtless groundwater development have caused to dry river and stream. In this study, the effectiveness of dry stream protection plan is evaluated by using 3-D groundwater flow modeling for the study area which is located in Namyangju of Kyoungi Province. Aquifer tests are performed to obtain the input data of the model. To analyze causes of dry stream using modeling results that water balance is analyzed for situations of before and after closing the wells.

  • PDF

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.

The Concentration Distribution and Source Identification of Polychlorinated Biphenyls in River Sediment (하천 퇴적물 중 PCBs 농도분포 및 발생원 해석)

  • Jin, Ronghu;Oh, Jung-Keun;Kim, Jong-Guk;Kim, Kyoung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.995-1000
    • /
    • 2010
  • To investigate the relationship between polychlorinated byphenyls (PCBs) sources and concentration level in sediment, total 63 sediment samples with three-time sampling at one site were measured at 21 sites in Nakdong River. As a result of analysis, total concentrations and toxic equivalent (TEQ) concentration of Dioxin-like PCBs were ranged from 3.0 to 6,600 pg/g-dry with a mean value of 440 pg/g-dry and

The Effect Factors on the Growth of Phytoplankton and the Sources of Organic Matters in Downstream of South-Han River (남한강 하류수역에서 식물플랑크톤 증식의 영향인자 및 수중유기를 기원)

  • Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myeong-Jae;Kim, Young-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.556-562
    • /
    • 2008
  • We divided the downstream of South-Han River into three water zones, such as river zone, transition zone and lacustrine zone depending on the flow rate, and elucidated the major effect factors on the growth of phytoplankton and the sources of organic matters in each water zone. The difference of chlorophyll-a concentration which represents the standing crop of phytoplankton was statistically significant among the water zones. From the results of bivariate correlation analysis between chlorophyll-a concentration and water quality parameters in each water zone, the outflow of Chungju dam and hydraulic retention time of Lake Paldang which are directly related with the flow rate seemed to have obvious impact on phytoplankton growth in the downstream of South-Han River. The concentration of nutrients such as phosphorus and nitrogen exceeded the criterion of eutrophication and did not showed significant relationship with chlorophyll-a concentration. There were strong correlations between $BOD_5$ and chlorophyll-a concentrations in transition and lacustrine zone showing autochthonous production of phytoplankton was dominant source of organic matters in these zones especially in dry seasons. The results of this study show that the control of abundance of phytoplankton is the key target for reduction of the organic pollution in the downstream of South-Han River.