• Title/Summary/Keyword: Dry milling process

Search Result 57, Processing Time 0.026 seconds

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

Characteristics of Environment-friendly Semi-dry Turning (환경 친화적인 세미드라이 선삭가공 특성)

  • Lee, Jong-Hang;Lee, Sang-Jo;Lee, Seok-U;Choe, Heon-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.221-226
    • /
    • 2002
  • As environmental restriction has continuously become more strict, machining technology has emphasized on development of environment-friendly technologies. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on workers health and working environment and, hence, recently there have been numerous attempts to minimize harmful effects of cutting fluids on environments. To minimize the use of cutting fluids in machining, conventional cutting fluids have been replaced with the technologies of pressurized cold air and minimum quantity lubrication (MQL). Compared with milling, turning is continuous cutting process, where tools are continuously heated up and lack of lubricity could lead to tool wear and deteriorated surface roughness. In this work, it has been investigated how tool wear and surface roughness could be affected by cutting conditions, supply and cooling methods. The experimental results show that MQL technology is able to minimize conventional cutting fluids.

Effect of Some Additives for Yukwa (Popped Rice Snack) Quality Improvement and Process Modification Trials (유과 품질향상을 위한 첨가물의 효과와 공정 단순화 시도)

  • Shin, Dong-Hwa;Kim, Myung-Kon;Chung, Tae-Kyu;Lee, Hyun-Yu
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.272-277
    • /
    • 1990
  • Some additives were applied to improve Yukwa(Popped rice snack) quality and process modifications were tested for cutting down soaking time and application of rice flour. Addition of soaked soybean (3%, w/w) to dough showed higher expansion rate and better physical properties with more acceptable quality by sensory evaluation of Yukwa. Baking powder, modified starch and alcoholic liquor, Mackeali(rice wine, turbid). Soju(distilled liquor) and Yakju(rice wine, clear), were no positive effect on quality of Yukwa but alcoholic liquor gave more fine texture than others. High temprature soaking $(60^{\circ}C)$ of rice for 3 hours which is near gelatinization temperature of rice starch. gave same quality of Yukwa comparing with long time soaking (12 hours) at room temperature. Extention of high temperature soaking (12 hours) did not improve the quality of Yukwa. The 100 mesh of rice flour by dry milling method was better in expansion rate and hardness than 40 and 80mesh but it was worse than ordinary wet milling. It was notified that milling method and milling mechines for Yukwa preparation should be studied in more detail.

  • PDF

Elucidating Energy Requirements in Alternative Methods of Robo Production

  • Akinoso, Rahman;Are, Oluwayemisi Teslima
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.128-137
    • /
    • 2018
  • Purpose: This study was designed to elucidate the energy-utilization patterns for five methods of robo production. Methods: Robo (fried melon cake) was produced using five different methods, and the energy used for each unit operation was calculated using standard equations. The sensory attributes of the products were determined by panelists. Data were analyzed using descriptive analysis and analysis of variance at p < 0.05. Results: The energy demands for processing 2.84 kg of melon seed into robo (fried melon cake) using processes 1 (traditional method), 2, 3, 4, and 5 (improved methods) were 50,599.5, 21,793.6, 20,379.7, 21,842.9, and 20,429.3 kJ, respectively. These are equivalent to energy intensities of 1,7816.7, 7,673.8, 7,175.9, 7,691.2, and 7,193.4 kJ/kg, respectively. For the traditional process, the frying operation consumed the highest energy (21,412.0 kJ), and the mixing operation consumed the lowest energy (675.0 kJ). For the semi-mechanized processes, the molding operation consumed the highest energy (6,120.0 kJ), and the dry milling consumed the lowest energy (14.4 kJ). Conclusions: The energy-consumption patterns were functions of the type of unit operation, the technology involved in the operations, and the size of the equipment used in the whole processing operation. Robo produced via the milling of dried melon seed before oil expression was rated highest with regard to the aroma and taste quality, as well as the overall acceptability of the sensory evaluation, and required the lowest energy consumption. Full mechanization of the process line has potential for further reduction of the energy demand.

Fabrication and Characterization of High Purity of Fine Alumina from Korean Alunite and Sulfate Salts (국산 명반석과 황산염으로부터 고순도의 미세한 알루미나의 제조 및 특성에 관한 연구)

  • 변수일;이수영;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.1
    • /
    • pp.13-20
    • /
    • 1979
  • High purity alumina has been extracted form low grade Korean alunite. Alunite ore was treated by 15% $NH_4OH$ solution, followed by 10% $H_2SO_4$ leaching and metallic impurities such as Fe and Ti were removed by solvent extraction method. Alumina prepared by the extraction process was 99.9% in purity. Hot Petroleum Drying Method has been employed for the preparation of uniformly fine alumina powder, using chemical reagent aluminum sulfate and ammonium aluminum sulfate extrated from Korea alunite. The sinterability of alumina powder prepared by Hot Petroleum Drying Method was shown to be improved in comparison with the one treated by other methods such as ball milling method, but dry pressing was difficult due to the agglomeration of calcined powder. The best slip of alumina powder prepared by Hot Petroleum Drying Method contained a lower soild content than the one treated by other methods. The alumina body formed by soild and drain casting with the former alumina powder showed a higher sintered density.

  • PDF

Effect of Ball End Mill Geometry and Cutting Conditions on Machinability of Hardened Tool Steel

  • Jang, Dong-Y.;Won, S.-T.
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Roughing of tool steel in its hardened state represents a real challenge in the die and meld industry and process improvement depends on research of tool material, coating technique, and lubrication. However, roughing of hardened steels generates extreme heat and without coolant flooding, tool material cannot withstand the high temperature without choosing the right tools with proper coating. This research conducted milling tests using coated ball end mills to study effects of cutting conditions and geometric parameters of ball end mills on the machinability of hardened tool steel. KP4 steel and STD 11 heat treated steels were used in the dry cutting as the workpiece and TiAIN coated ball end mills with side relief angle of 12$^{\circ}$ was utilized in the cutting tests. Cutting forces, tool wear, and surface roughness were measured in the cutting tests. Results from the experiments showed that 85 m/min of cutting speed and 0.32 mm/rev of feed rate were optimum conditions for better surface finish during rough cutting and 0.26mm/rev with the same cutting speed are optimum conditions in the finish cutting.

Synthesis and Sintering Behaviors of Nanostructured WC-Co Hardmetal Powders doped Grain Growth Inhibitors of VC/TaC (입자성장 억제제 VC/TaC가 첨가된 나노구조 WC-Co 초경 복합분말의 제조와 소결 특성 연구)

  • 김병기;하국현;권대환;김진천
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.273-279
    • /
    • 2002
  • In this study, the WC-10 wt.%Co nanopowders doped by grain growth inhibiter were produced by three different methods based on the spray conversion process. Agglomerated powders with homeogenous distribution of alloying elements and with internal particles of about 100-200 nm in diameter were synthesized. The microstructural changes and sintering behavior of hardmetal compacts were compared with doping method and sintering conditions. The microstructure of hardmetals was very sensitive to doping methods of inhibitor. Nanostructured WC-Co hardmetal powder compacts containing TaC/VC doped by chemical method instead of ball-milling shown superior sintering densification, and the microstructure maintained ultrafine scale with rounded WC particles.

A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards (물리적 처리에 의한 폐 컴퓨터 기판으로부터 유가금속의 분리선별 특성 연구)

  • 현종영;채용배;정수복
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Printed wiring boards(PWBs) of the obsolete computers are composed of various organic and inorganic compounds as well as metals and alloys. As convinced that the valuable metals obtained from the PWBs are effectively utilized as secondary resources when recovered by economical methods, in this study, an investigation for characterizing the physical separation techniques is conducted. For the recovery of them, the sockets and chips dismantled from PWBs by scraping and residual resin boards are subjected to the appropriate separation processes according to the physical properties of each part. In the case of crushed socket scraps size ranged from -2.36 mm to +1.18 mm, approximately 97 wt% of the product obtained by magnetic separation consists of metallic compounds. In the case of chip scraps, 97% of Fe-Ni alloy and 95% of Cu metal are recovered by the combined process of air classification and dry magnetic separation in the size range from -2.36 mm to +0.15 mm. Ball milling is adopted in order to improve the removal efficiency of the thin-printed metallic materials on the residual resin boards and approximately 77% of Cu metal is recovered by zigzag separation after ball milling.

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(I) - The Sintering Properties of Hydroxyapatite and Hydroxyapatite- Containing Wollastonite Crushed with Dry Milling Process - (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제1보)-건식법으로 분쇄한 Hydroxyapatite 및 Wollastonite가 첨가된 소결체의 특성-)

  • Kim, Se-Kwon;Lee, Chang-Kook;Byun, Hee-Guk;Jeon, You-Jin;Lee, Eung-Ho;Choi, Jin-Sam
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.994-999
    • /
    • 1997
  • The sintering properties of hydroxyapatite isolated from tuna bone and hydroxyapatite-containing wollastonite sintered by solid-state reaction was investigated. As the sinterability of hydroxyapatite dependent upon the particle size by dry milling, it showed a sintering. But the hydroxyapatite-containing wollastonite was appeared good sinterability. On X-ray measurements, the major phases of hydroxyapatite-containing wollastonite by solid state reaction at $1250^{\circ}C$ were identified as hydroxyapatite and pseudowollastonite(${\alpha}-CaSiO_3$). And the phases appeared as whitlockite [$Ca_3(PO_4)_2$] by decomposition of hydroxyapatite at higher temperature above $1250^{\circ}C$. The shapes of microstructure on SEM images changed from porous to dense bulk by elevating temperature. The mean bending strength of hydroxyapatite-containing wollastonite sintered by solid-state reaction at $1300^{\circ}C$ was about 18 MPa, it was close to the cancellous bone's maximum strength, 20 MPa.

  • PDF

Semidry-cutting Characteristics according to Workpiece Materials (공작물 재질에 따른 세미드라이 절삭가공 특성)

  • Lee, Jong-Hang;Park, Cheol-Woo;Lee, Seok-Woo;Choi, Hon-Zong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.968-973
    • /
    • 2003
  • As environmental restrictions have continuously become more strict, it has emphasized development of environment-friendly technologies. In cutting technology, it has been well recognized that cutting fluids might have undesirable effects on worker's health and working environment and, hence, recently there have been numerous attempts to minimize harmful effects of cutting fluids on environments. To minimize the use of cutting fluids in machining, conventional cutting fluids have been replaced with the technologies of pressurized cold air and minimum quantity lubrication(MQL). Compared with milling, turning is a continuous cutting process, where tools are continuously heated up and lack of lubricity could lead to tool wear and deteriorated surface roughness. In this study, it has been investigated how tool wear and surface roughness could be affected by cutting conditions, supply and cooling methods. The experimental results show that MQL technology is able to minimize harmful effects of conventional cutting fluids.

  • PDF