• Title/Summary/Keyword: Dry friction

Search Result 357, Processing Time 0.028 seconds

A comparative study of frictional forces according to orthodontic wires and ligation method under dry and wet conditions (교정선의 종류, 결찰방법, 타액의 유무에 따른 마찰력의 비교연구)

  • Lee, Jin-Woo;Cha, Kyung-Suk;Han, Jung-Suk
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.271-281
    • /
    • 2001
  • The Purpose of this study was fourfold - to evaluate the general laws of friction applied to orthodontic conditions, to compare archwire materials under these controlled conditions, to compare ligation method, and to measure the effect of the artificial saliva on friction with these materials Three wire alloys (Cobalt-chromium, Nickel-titanium, Beta-titanium) in two size wires (.016" , .016" ${\times}$.022" ) were examined respect to the bracket (.018" ${\times}$.025" standard), and two ligature material (stainless steel, elastomeric) in dry and wet conditions The results were as follows, 1. The order of frictional force against alloy materials was Co-Cr (lowest), Ni-Ti, and ${\beta}$-Ti(highest) - with the exception of elastomeric ligation under wet conditions. 2. S.S. ligation gave rise to significantly greater friction than elastomeric ligation did. 3. Testing in the presence of saliva, rather than in dry conditions, decreased the frictional force for S.S. ligation with .016" Co-Cr, Ni-Ti, ${\beta}$-Ti. but, increased the frictional force for S.S. ligation with .016" ${\times}$ .022" Co-Cr, Ni-Ti, ${\beta}$-Ti. 4. .016" ${\times}$.022 " wire generated more friction than .016" wire.

  • PDF

Fundamental Study on Geotechnical Properties of Sand-Bentonite Mixtures (모래-벤토나이트 혼합물의 지반 공학적특성에 관한 기초 연구)

  • 권무남;유택항
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.99-110
    • /
    • 1997
  • The study was conducted in order to investigate the basic geotechnical properties of sand-bentonite mixtures with the various bentonite contents. The results obtained are as follows : 1. Optimum moisture content of sand-bentonite mixtures was approximately 17.10~18.52% corresponding to the maximum dry density of 1.58~1 .64gf/$cm^3$. As the bentonite contents and curing peroid increased, both the maximum dry density and optimum moisture content of sand-bentonite mixtures increased. 2. The unconfined compressive strength of sand-bentonite mixtures increased as the increase of bentonite content, but it did not change along the curing period. 3. The sand-bentonite mixtures ruptured at 8~15% of the axial strain and the maxi-mum shearing stress was about O.7Okgf/$cm^2$. 4. According to the increase of bentonite content, the cohesion intercept and internal friction of the sand-bentonite mixtures increased slightly in the shear test, while the cohesion intercept increased largely, and the internal friction angle decreased largely in the triaxial test. 5. Both the initial void ratio and swelling of the sand-bentonite mixtures were very low with respect to the consolidation pressure increase. 6. The swelling and shrinkage of sand-bentonite mixtures increased slightly according to the increment of bentonite content.

  • PDF

Behavior of Dry-stone Segmental Retaining Wall Using Physical Modeling and Numerical Simulation (모형시험과 수치해석을 이용한 조적식 석축옹벽의 거동 특성)

  • Kim, Seong-Su;Mok, Young-Jin;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.25-36
    • /
    • 2011
  • The behavior of the dry-stone masonry retaining structure has been investigated via physical model test and numerical simulation. In the model test, the digital image analysis using PIV technique was employed to measure horizontal displacements in the backfill soils and retaining blocks. For finite element numerical analyses, the commercial code, ABAQUS, was used. The horizontal displacements observed in the model test showed that the development of the failure surface is progressive. Numerical results showed that in most cases horizontal earth pressure is distributed similarly to a conventional Rankine’s distribution. However, lower values of the internal friction angle of the backfill soils and interface friction angle in the front blocks produce irregularly nonlinear distribution of the horizontal earth pressure.

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF

Investigations on Relationship between Fractal Dimension and 3-D Surfaces Topography of C.G. Irons under Dry Sliding

  • Yongzhen, Zhang;Gesen, Sun;Lemin, Sun;Weimin, Liu;Bao, Shangguan;Yue, Chen
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.253-254
    • /
    • 2002
  • Based on 3-D surface morphology measurements of C.G. irons, the fractal analyses were made on relationship between dry sliding surface morphology and the fractal dimension. It is revealed that the values of fractal dimensions ($D_f$) of sliding surfaces are in the range between 1-2, which are closely related to the surface morphologies. With the increase in depths of grooves or pits, the $D_f$ values increase. At the same time, the increases in densities of the grooves also cause the $D_f$ values to increase. At last, relationship among $D_f$ and friction coefficient as well as wear rate is discussed.

  • PDF

A Study on The Wear Process and Wear Mechanism of the Alumina Ceramics with Different Alumina Purity (순도를 달리한 알루미나 세라믹스의 마멸과정 및 이의 기구에 관한 연구)

  • 전태옥;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3404-3412
    • /
    • 1994
  • The present study was undertaken to investigate the dry wear process and wear mechanism of the alumina ceramics in the purity variation which are used for the mechanical seal, roll, liner and dies. The wear test was carried out under different experimental condition using the wear testing device and in which the annular surface rubbed on dry sliding condition various sliding speed, contact pressure and sliding distance. In case of alumina purity 95%, there was speed range which wear loss increased rapidly owing to enlargement of heat impact force and temperature rise of wear surface. According as the alumina purity increased, wear loss decreased but alumina purity 85% with much void and defect had the most wear loss than any other alumina purity. The friction coefficient of sliding initial stage of wear curves has a large value but according to increase of sliding distance, it decreased owing to drop of the shear strength of wear surfaces.

Development and Evaluation of Dry Lubricant Recycle Technologies for Wire Drawing Process (와어어 인발용 건식 윤활제의 재생기술 개발 및 평가)

  • Kim, Sun-Ho;Jang, Gyu-Chul;Lee, Chi-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • Wire drawing is aplastic deformation process that produces a wire with a desired diameter by pulling the end of the wire through a die. During the cold wire drawing process, the temperature between the wire and the die bearing is increased. This temperature increase causesenergy consumption increase, bad wire quality, and decreased die life. To reduce friction and avoid high temperature between the wire and the die in the cold wire drawing process, a dry lubricant with soap particles is used. It is not possible to reused the lubricant onceiron oxide is attached to the soap particlesat high pressure die. In this study, recycling technologies for wasted soap particles with processes of crushing, separation, and screening are developed. From the evaluation, the recycling efficiency was found to be 86.97%.

Development of Contact Point Estimation Algorithm of Dry type Clutch with Considering the friction pad wear (마찰패드의 마모를 고려한 건식 클러치의 접촉점 추종 알고리즘 개발)

  • Kim, Sung-Mo;Kim, Mo-Seong;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.692-696
    • /
    • 2011
  • A clutch is a very important component when engine starts and gear shifting is needed. The clutch the most commonly used is the dry clutch. This type of clutch has pads, and they are worn after disengagement of clutch little by little. The characteristics of the clutch changes as these pads wear, so wear needs to be measured, and the clutch should be controlled for proper operation. In this study, the clutch contact point estimation algorithm has been developed. From this algorithm, clutch force map changes depending on wear, and the clutch operates properly. We also see the shifting transient of a vehicle for drivability with throttle valve position control and synchronizer movement.

Seismic analysis of free-standing spent-fuel dry storage cask considering soil-concrete pad-cask interaction

  • Seungpil Kim;Sang Soon Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4446-4454
    • /
    • 2024
  • This paper presents a seismic analysis method that can evaluate a very large number of cases for the free standing dry storage cask by proposing a methodology that has short analysis time as well as accuracy. This study also performed a seismic analysis of a dry storage facility with multiple casks to show a tip-over phenomenon from earthquake accident conditions. The earthquake accident condition is long-term event that occur during about 20 s long, and lots of seismic analysis cases should be performed to consider various real conditions because the free-standing spent-fuel dry storage cask has many nonlinear responses. The soil-concrete pad-cask interaction was considered in the seismic analysis and finite element model was made using concrete pad, soil and cask models. In the reinforced concrete pad, the rebar was excluded to reduce the analysis time, but the thickness was corrected to maintain the bending rigidity. Additionally, the analysis time reduced by modeling the cask as a rigid body rather than a flexible body. 35-cases of seismic analysis were performed to determine a tip-over phenomenon from each earthquake. The analysis revealed that no tip-over phenomenon of the cask was observed in all analyses from 0.2 g to 0.6 g, however the tip-over of the cask were observed from 0.8 g with friction coefficients of 0.8 and 1.0.

Effect of Coarse mateflal on the mechanical properties of Soil (조립재가 흙의 역학적 성질에 미치는 영향)

  • 윤충섭;김호일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.57-69
    • /
    • 1989
  • The study was carried out for the strength parameter of coarse grained Soil and slope stability analysis of earth dam. The test samples were taken fifteen kinds of soil from cohesive soil to coarse gravel. The degree of compaction of test samples for shear test and permeability test was chosen 95 percentage of maximum dry density. The results of this study are as follows ; 1.The maximum dry density(Yd) of coarse grained soil increase in proportion to coarse particles(P) with the relation of Y d= 1.609+0.0043P. 2.The coefficients of permeability(k) decrease by the increase of fine particles(n) with the relation of k=0.0426e-0 185n. 3.The cohesions of soil decrease by the increase of coarse particles, but internal friction angles are more increased in same condition. 4.The internal friction angles(${\Phi}$) decrease in inverse proportion to void ratio(e) with the relation of ${\Phi}$ = 73.068 - 69.268e. 5.The strength parameters( Ct ${\Phi}$t) by triaxial compression test are clearly smaller than that (Cd, ${\Phi}$d) by direct shear test in fine grained soil, but the differences between both parameters are a little in coarse grained soil.The relations of both parameters are as follows; Ct = O.544Cd + 0.04 ${\Phi}$t= 1.282${\Phi}$d-2306 6.In cohesive soil, the strength parameters( Cl ${\Phi}$l) by large size shear test apparatus are similar to the strength parameters(Cs , ${\Phi}$s) by small size shear test appratus, but Cs and ${\Phi}$s values are larger than Cl and ${\Phi}$l values from 10 percentage to 20 percentage in coarse grained soil. 7.The fine grained soil is inappropriate to high dam more than 20 meters and it must be taken coarse grained soil with high internal friction angle for high dam.

  • PDF