• Title/Summary/Keyword: Dry film thickness

Search Result 93, Processing Time 0.032 seconds

Optimization of Process Parameters for Dry Film Thickness to Achieve Superior Water-based Coating in Automotive Industries

  • Prasad, Pranay Kant;Singh, Abhinav Kr;Singh, Sandeep;Prasad, Shailesh Kumar;Pati, Sudhanshu Shekher
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • A study on water-based epoxy coated on mild steel using the electroplating method was conducted to optimize the process parameters for dry film thickness to achieve superior paint quality at optimal cost in an automotive plant. The regression model was used to adjust various parameters such as electrode voltage, bath temperature, processing time, non-volatile matter, and surface area to optimize the dry film thickness. The average dry film thickness computed using the model was in the range of 15 - 35 ㎛. The error in the computed dry film thickness with reference to the experimentally measured dry film thickness value was - 0.5809%, which was well within the acceptable limits of all paint shop standards. Our study showed that the dry film thickness on mild steel was more sensitive to electrode voltage and bath temperature than processing time. Further, the presence of non-volatile matter was found to have the maximum impact on dry film thickness.

A Study on the Experimental Relation between Parameters for Determining Dry Film Thickness in the Application of Anti Corrosive Paint using Hydraulic Plural Component (이액형 도장기기를 이용한 방식 도장 시 건도막두께 결정인자들에 대한 실험적 상관관계 연구)

  • Yun, Won-Jun;Choi, Min-Gu;Lee, Sung-Goun;Lee, Yun-Sig;Heo, Byung-Dong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • Anticorrosive paint is the most widely used in shipbuilding and the dry film thickness is very important in terms of productivity and assurance of anticorrosive performance. However, it is difficult to achieve the recommended target film thickness because the dry film thickness depends on labor's skill in practice and is affected by a number of parameters, such as spray pressure, paint flow rate, tip size, spray distance, SVR(Solid Volume Ratio), etc. Present paper derives an empirical equation through the correlation analysis of parameters selected by spray experiments of anti corrosive painting in order to predict the coated status. Comparing the calculated results with practical data, we show that the empirical equation can successfully expect DFT(Dry Film Thickness).

A Study on Correlation of Dry Film Thickness with Multi-Nozzle Spray Pattern of Shop Primer (Shop Primer의 다중 노즐 분사 스프레이 패턴 인자와 도막두께의 상관관계에 관한 연구)

  • Yun, Won-Jun;Choi, Min-Kyu;Ro, Young-Shic
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.743-749
    • /
    • 2010
  • Multi-nozzle spray painting procedure of the inorganic zinc shop primer was established in order to obtain uniform film thickness. The shop primer paint prevents the corrosion of steel block during shipbuilding. When the dry film thickness of shop primer is insufficient, rust will be generated on the steel block. Otherwise, thick coating of shop primer may be a problem of weld defect. So, it is important to obtain the uniform film thickness of shop primer. The uniformity of dry film thickness is affected by spray speed, distance from spray gun to target surface and overlapping span of spray path. In order to uniformly maintain coating thickness of shop primer, the coating procedure was established based on the correlation of shop primer spray variables.

Effect of wet/dry transition on the atmospheric corrosion of Zn (아연의 대기부식에 미치는 주기적 침적/건조 효과)

  • Kim, Ki-Tae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1998.05a
    • /
    • pp.3-3
    • /
    • 1998
  • The atmospheric corrosIOn properties of Zinc (Zn) under wet/dry transition of $H_20$ film were investigated in this study. The atmospheric corrosion of metal is usually occurred as a result of repetitious thickness transition (so called wet/dry transition) of liquid phase which is covering the metal surface. Corrosion potential and the polarization behaviour of Zn during liquid film thickness transition were measured by Kelvin probe method which IS using vibrating reference electrode without touching the liquid film. The oxidized states of Zn as a result of successive wet/dry transition were also investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the corrosion potential and the corrosIOn rate of Zn both are increasing during drying. However, the corrOSIon rate is decreasing again when the Zn surface is completely dried while the corrosion potential still remains high. This behaviour can be explained by the polarization behaviour change of Zn according to the $H_20$ film thickness change. The completely dried surface is consisted mostly with Zn and ZnO phases. After a number of cycles of wet/dry transition, however, the oxidized Zn phase of ${\varepsilon}-Zn(OH)_2$, which has rather voluminous and defected structure, were found.

  • PDF

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

Heating & Drying Characteristics of Coating Layer by Induction Heating and Short-wave Infrared Heating (유도가열 및 근적외선 가열방법에 의한 표면처리 강판 도포층의 가열 및 건조 특성)

  • Kim T. S.;Yang J. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.249-257
    • /
    • 2004
  • Drying and curing characteristics of PCM resins using the induction heater and short-wave infrared emitter module was studied to develop a compact oven system for the high speed CCL and post-treatment equipment. Drying of the polyester resins using the induction heater and infrared heater showed that the blistering tendency of polyester resin coating increased regardless of additives and colors of resins as the heating rate and/or dry film thickness increased. The blistering of polyester resin coating layer occurred when the heating speed was over than $25^{\circ}C/sec$ for the dry film thickness of $19\~20um$, which is the typical thickness of finish coating in CCL. So did it when the heating speed was over than $40^{\circ}C/sec$ for the dry film thickness over than 10 um. The heating efficiency of paint coated steels by the infrared heating was strongly dependent on the colors of paint coating and generally increased for the dark surface and/or coating. But the faster drying of the PCM resin coatings increased the blistering tendency of coating layer. The blistering limit for the typical finish coating by the infrared heating was estimated as the heating rate slower than $20^{\circ}C/sec$ regardless of colors of PCM resins.

  • PDF

A Study on Dry Film Formation of Clay Solution (점토 혼합액의 건조박막 형성에 관한 연구)

  • 박헌휘
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.180-186
    • /
    • 1998
  • In this study, the effect of shear rate on the viscosity variation is examined to understand the flow characteristics of the mixture of bentonite and water. The variation of film thickness according to mixing ratio and viscosity is measured to characterize the film formation. And, the separation of dried film is studied according to film thickness. Specific surface area affecting on adsorption capability is measured using BET method. The viscosity decreases and the film thickness increases as the mixing ratio increases. The separation characteristic of dried film is suitable within a range of 40 to 150 ${\mu}{\textrm}{m}$ in film thickness and 5 to 10% in mixing ratio.

  • PDF

Formation of Fine Pitch Solder Bumps on Polytetrafluoroethylene Printed Circuit Board using Dry Film Photoresist (Dry Film Photoresist를 이용한 테프론 PCB 위 미세 피치 솔더 범프 형성)

  • Lee Jeong Seop;Ju Geon Mo;Jeon Deok Yeong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.169-173
    • /
    • 2003
  • We demonstrated the applicability of dry film photoresist (DFR) in photolithography process for fine pitch solder bumping on the polytetrafluoroethylene (PTFE/Teflon) printed circuit board (PCB). The copper lines were formed with $100\;{\mu}m$ width and $18\;{\mu}m$ thickness on the PTFE test board, and varying the gaps between two copper lines in a range of $100-200\;{\mu}m$. The DFRs of $15\;{\mu}m$ thickness were laminated by hot roll laminator, by varying laminating temperature from $100^{\circ}C\;to\;150^{\circ}C$ and laminating speed. We found the optimum process of DFR lamination on PTFE PCB and accomplished the formation of indium solder bumps. The optimum lamination condition was temperature of $150^{\circ}C$ and speed of about 0.63 cm/s. And the smallest size of indium solder bump was diameter of $50\;{\mu}m$ with pitch of $100\;{\mu}m$.

  • PDF

Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions (마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

Formation of Fine Pitch Solder Bumps on Polytetrafluoroethylene Printed Circuit Board using Dry Film Photoresist (Dry Film Photoresist를 이용한 테프론 PCB 위 미세 피치 솔더 범프 형성)

  • 이정섭;주건모;전덕영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • We have demonstrated the applicability of dry film photoresist (DFR) in photolithography process for fine pitch solder bumping on the polytetrafluoroethylene (PTFE/Teflon ) printed circuit board (PCB). The copper lines were formed with 100$\mu\textrm{m}$ width and 18$\mu\textrm{m}$ thickness on the PTFE test board, and varying the gaps between two copper lines in a range of 100-200$\mu\textrm{m}$. The DFRs of 15$\mu\textrm{m}$ thickness were laminated by hot roll laminator, by varying laminating temperature from $100{\circ}C$ to 15$0^{\circ}C$ and laminating speed from 0.28-0.98cm/s. We have found the optimum process of DFR lamination on PTFE PCB and accomplished the formation of indium solder bumps. The optimum lamination condition was temperature of $150^{\circ}C$ and speed of about 0.63cm/s. And the smallest size of indium solder bump was diameter of 50$\mu\textrm{m}$ with pitch of 100$\mu\textrm{m}$.

  • PDF