• Title/Summary/Keyword: Dry deposition fluxes

Search Result 43, Processing Time 0.017 seconds

Measurement of Atmospheric Dry Deposition and Size Distribution of Particulate PCBs in 1999 at Seoul

  • Park, Seong-Suk;Shin, Hye-Joung;Yi, Seung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.35-43
    • /
    • 2006
  • Ambient particle size distributions of PCBs and their dry deposition fluxes were measured at a site in Seoul to quantify dry deposition fluxes of PCBs and size characteristics of PCBs in the air, and to estimate ambient concentrations of gaseous PCBs and dry deposition fluxes. The dry deposition plate was used to measure dry deposition fluxes of particulate mass and PCBs and a cascade impactor and rotary impactor were used to measure ambient particle size distributions for small ($D_p<9{\mu}m$) and large ($D_p>9{\mu}m$) particles, respectively. Six sample sets were collected from April to July 1999. The fluxes of particulate total PCBs (the sum of 43 congeners) ranged from 160 to $607ng\;m^{-2}day^{-1}$. The size distribution of total PCBs was bimodal with two peaks in small particle size ($D_p{\sim}0.6\;and\;6{\mu}m$, respectively) and, thus, mass concentration being dominant in small particles. The mean particulate PCBs concentration was $6.9{\mu}g$ PCBs/g. The concentrations of PCB homologues in the gas phase were estimated based on the particle/gas partition coefficient ($K_p$) with the measured values of particulate PCBs in this study and they were comparable to those observed in other previous studies. Dry deposition fluxes were estimated by calculating dry deposition velocities.

Atmospheric Dry Deposition Characteristics of Nitrogen-containing Compounds into Juam Reservoir (주암호에 대한 질소화합물의 대기건식침적 특성)

  • Cheong Jang-Pyo;Jang Young-Hoan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.657-666
    • /
    • 2005
  • The objectives of this study were to investigate atmospheric dry deposition of inorganic nitrogen-containing compounds to waterbody. Target waterbody is Juam reservoir functioning as one of the major water supply sources in Chollanamdo. Nitrate and ammonium dry deposition fluxes were directly measured using dry deposition plate (DDP) covered with greased strips and a water surface sampler (WSS). The daytime average $NO_{3}^{-}\;and\;NH_{4}^{+}$ fluxes measured with DDP and WSS were $1.7\∼2.6$ times higher than those at nighttime. The seasonal average flux of $NH_{4}^{+}$ showed the highest value in summer. The daytime and nighttime average dry deposition fluxes of particulate phase Nitogen-containing Compounds ($1.13,\;0.80\;mg/m^{2}$ day) were much higher than those of gas phase compounds ($0.50,\;0.24\;mg/m^{2}$ day).

Characteristics of the dry deposition fluxes and ambient particl size distributions of PCBs: The measurements on fall, 1999 (입자상 PCBs 건식침적량과 입경분포 특성: 1999년 가을 측정)

  • Shin, Hye Jung;Kim, Yong Pyo;Yi, Seung Muk
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.179-188
    • /
    • 2009
  • The dry deposition fluxes of particulate polychlorinated biphenyls (PCBs) were measured along with their mass size distributions at Seoul and Incheon in fall in 1999. The dry deposition fluxes of PCBs were in the range of $16.7{\sim}62.2ng/m^2/day$. The ambient concentrations of particulate PCBs were in the range of 0.07 to $0.20ng/m^3$. Generally, the mass size distribution of particulate PCBs shows bi-modal distribution. The mass fraction of PCBs in the fine particle fraction ($D_p<2.1 {\mu}m$) was over than 55% of the total PCBs concentrations. It was found that Seoul and Incheon were not the major source of PCBs emissions in Korea. Based on the comparison with the measurement data in summer, 1999, it is likely that both the dry deposition fluxes and ambient particulate PCBs concentrations were not site-specific.

  • PDF

Effect of Dry Deposition on Water Quality -The comparison of several methodologies for estimating dry deposition flux (수질에 대한 대기건식침적의 영향 - 건식침적량 추정 방법론의 비교를 중심으로)

  • Cheong, Jang-Pyo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.159-168
    • /
    • 2008
  • A special field experiment has been carried out from March 2001 to June 2001 at the Changhowon in Kyunggi to investigate a better methodology for the estimation of dry deposition of pollutions applicable in Korea. In this study, dry deposition plate was used to measure of total and water soluble acidic mass fluxes, and CPRI(Coarse Particle Rotary Impactor), CI(Cascade Impactor) were also used to measure ambient concentrations in various particle size ranges. Sehmel-Hodgson model was used to estimate dry depostion velocity and Weibull probability distribution function was applied to get generalized particle size distribution for the size fractioned concentration data sampled by CPRI and CI. Atmospheric dry deposition fluxes of mass and ionic matters estimated by the various techniques(one-step, multi-step, equi-concentration, subdivision for only the coarse particle range, applying Weibull distribution function, etc.) were compared to flux data sampled by DDP. It was found out that the deposition fluxes estimation methodology calculated by the each particle size range devided by particle size distribution characteristics and the rapidly changed points of deposition velocity using Weibull probability distribution function was the most applicable.

The Importance of Dry Deposition : Dry Deposition Fluxes of Heavy Metals In Seoul, Korea During Yellow-Sand Events

  • Yi, Seung-Muk
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.76-85
    • /
    • 2003
  • Mass and elemental dry deposition fluxes and ambient particle size distributions were measured using dry deposition plates and a cascade impactor, from March to November 1998 in Seoul, Korea. During the spring sampling period several yellow sand events characterized by long range transport from China and Mongolia impacted the area. During these events the mass fluxes were statistically the same as during springtime non-yellow-sand events. However, most elemental fluxes were higher. In general, the flux ratios of both crustal (Al, Ca, Mn) and anthropogenic elements (Ni, Pb) to total mass measured during the daytime yellow-sand events were substantially higher than those measured in spring daytime during non-yellow-sand time periods. During all seasons the average measured daytime fluxes were about two times higher than at nighttime. The flux of primarily anthropogenic metals (Cu, Ni, Pb, Zn) and Mn was on average one to two orders of magnitude lower than the flux of the crustal metals Al and Ca. As is typically found two modes, fine (0.1∼l.0 $\mu\textrm{m}$) and coarse (1.0∼10.0 $\mu\textrm{m}$) were present in the measured size distributions (<10 $\mu\textrm{m}$). The particles in the coarse mode constitute a major portion of the measured mass size distribution during the yellow-sand events possibly due to the long-range transport of those particles from China.

  • PDF

Mercury Fluxes from the Nan-Ji-Do Area of Seoul -Application of Micrometerorological Methods (미기상학적 기법을 응용한 난지도지역이 수은교환율 측정연구)

  • 김민영;김기현;이강웅;정일현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.585-594
    • /
    • 2000
  • Through an application of Micrometerorological methods, we conducted measurements of Hg fluxes from Nan-Ji-Do which is well known as one of the major local areal sources in Seoul metropolitan area during Match/April of 2000. In the course of our study, we determined the concentration gradients of total gaseous Hg(between 20 and 2000 cm heights) and combined these data with Micrometerorological components to derive is fluxes. It turned out that emission from and dry deposition to soil surfaces occurred at the ratio of 72:27 from a total of 271 hourly measurements. The validity of measured concentration gradients( or resulting fluxes) was evaluated in terms of percent gradient. Accordingly, about more than 95% of gradient data derived were statistically significant. The mean fluxes of Hg across soil-air interface, when computed using the concentrations gradients and relevant parameters, were found at 253(during emission) and -846ng/$m^2$/h(during dry deposition) The occurrences of abnormalously high exchange rates appear to be the combined effects of enormously high gradient values and high transfer coefficients. While the emissions of Hg occurred constantly during the whole study periods, the occurrences of dry deposition events were observed most intensively during very limited time periods(3/29 and 4/3). The results of our study cleary indicated that the studied area is a strong local areal source, while exhibiting great potential as a major sink simultaneously.

  • PDF

Measurement of Nitrogen and Sulfur Deposition to Lake Paldang (팔당호로의 질소와 황성분 침적 측정)

  • Ghim Young Sung;Jin Hyoun Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Nitrogen and sulfur deposition was measured on Lake Pal dang from March 2002 to October 2003. Wet and dry depositions were separately measured using wet- and dry-only samplers, respectively. In order to measure the dry deposition to the water body, a dry deposition sampler composed of three pans filled with pure water, called the deposition water, was used. Since ammonium was generally in excess in ambient air, more than half of ammonium was present in the gaseous form. Ammonium concentration was also generally higher than the sum of major anion concentrations in the deposition water because gaseous species were much easily deposited than the species in fine particles. Nevertheless, the contribution of gaseous ammonia to the deposition of ammonium was not high as well as that of particulate ammonium while the contribution of gaseous nitric acid was much higher than that of particulate nitrate. Annual wet deposition fluxes of nitrogen and sulfur were five and six times higher than their dry deposition fluxes, respectively. Except for ammonium, the dry deposition flux estimated in the present work was a half of the previous results. This was mainly caused by much smaller dry deposition velocities over the water than over the ground.

Characteristics of Ambient Metals: Size Segregated Ambient Concentrations and Dry Deposition Fluxes at Four Sites in Kunpo in 2000

  • Kim, Yong-Pyo;Yun, Hui-Jung;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.57-68
    • /
    • 2002
  • Atmospheric dry deposition fluxes and size segregated concentrations of particulate metal elements were measured at four sites in Kunpo, a small city in the Seoul metropolitan area in Korea. At each site, aerosol samples were collected by dry deposition plates, a cascade impactor, and a coarse panicle rotary impactor during four sampling periods. At all sites, the average fluxes of metals measured during daytime were higher than nighttime fluxes due to higher wind speeds and higher ambient concentrations during daytime. The average fluxes of crustal elements (Al, Ca) were 1∼2 orders of magnitude higher than anthropogenic elements (As, Cd, Cu, Mn, Ni, Pb, and Zn). The daytime fluxes of Al and Ca were between 90 and 12000 $\mu\textrm{g}$ m$\^$-2/ day$\^$-1/, and the nighttime fluxes of Al and Ca were between 20 and 2200 $\mu\textrm{g}$ m$\^$-2/ day$\^$-1/. The daytime fluxes of Pb, a typical anthropogenic element, were between 20 and 160$\mu\textrm{g}$ m$\^$-2/ day$\^$-1/, and the nighttime fluxes of Pb were between ND and 100$\mu\textrm{g}$ m$\^$-2/ day$\^$-1/. Also the ambient metal concentrations during daytime were higher than nighttime. Based on a dust emission estimation study in Kunpo, it was found that dust emissions during daytime are higher than nighttime. The concentrations of crustal elements were higher than anthropogenic elements. The distributions of heavy metals were mainly in small particles (D$\_$p/ 9㎛). The fraction of crustal elements in the large particles (D$\_$p/> 9㎛) were higher than anthropogenic elements.

Identification of Source Locations for Atmospheric Dry Deposition of Heavy Metals during Yellow-Sand Events in Seoul, Korea in 1998 Using Hybrid Receptor Models

  • Han, Young-Ji;Holsen, Thomas M.;Hopke, Philip K.;Cheong, Jang-Pyo;Kim, Ho;Yi, Seung-Muk
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.92-106
    • /
    • 2004
  • Elemental dry deposition fluxes were measured using dry deposition plates from March to June 1998 in Seoul, Korea. During this spring sampling period several yellow sand events characterized by long-range transport from China and Mongolia impacted the area. Understanding the impact of yellow-sand events on atmospheric dry deposition is critical to managing the heavy metal levels in the environment in Korea. In this study, the measured flux of a primarily crustal metal, Al and an anthropogenic metal, Pb was used with two hybrid receptor models, potential source contribution function (PSCF) and residence time weighted concentration (RTWC) for locating sources of heavy metals associated with atmospheric dry deposition fluxes during the yellow-sand events in Seoul, Korea. The PSCF using a criterion value of the 75th percentile of the measured dry deposition fluxes and RTWC results using the measured elemental dry deposition fluxes agreed well and consistently showed that there were large potential source areas in the Gobi Desert in China and Mongolia and industrial areas near Tianjin, Tangshan, and Shenyang in China. Major industrial areas of Shenyang, Fushun, and Anshan, the Central China loess plateau, the Gobi Desert, and the Alaskan semi-desert in China were identified to be major source areas for the measured Pb flux in Seoul, Korea. For Al, the main industrial areas of Tangshan, Tianjin and Beijing, the Gobi Desert, the Alashan semi-desert, and the Central China loess plateau were found to be the major source areas. These results indicate that both anthropogenic sources such as industrial areas and natural sources such as deserts contribute to the high dry deposition fluxes of both Pb and Al in Seoul, Korea during yellow-sand events. RTWC resolved several high potential source areas. Modeling results indicated that the long-range transport of Al and Pb from China during yellow-sand events as well as non yellow-sand spring daytimes increased atmospheric dry deposition of heavy metals in Korea.

  • PDF

A Study on the Characterization of Size Distributions and Atmospheric Dry Deposition of Heavy Metals (대기중 중금속 입자의 입경분포 및 건식침적 특성에 관한 연구)

  • Yi, Seung-Muk;Lee, Eun-Young;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.575-585
    • /
    • 2000
  • Mass and elemental dry deposition fluxes and ambient particle size distributions were measured using dry deposition plates, a cascade impactor. and a CPS(Coarse Particle Sampler), from July to November 1998 in Seoul. Korea. Primarily anthropogenic elemental fluxes (Cu, Mn, Ni, Pb, Zn) were on average one to two orders of magnitude lower than primarily crustal elements (Al, Ca). Complete total and elemental particle size distributions showed trimodal size distributions due to the peak in particles larger than $10{\mu}m$ in diameter. A multi-step model and the Sehmel-Hodgson model were used to calculate total and cumulative deposition fluxes. The result indicated that dry deposition fluxes were extremely sensitive to the mass of particles larger than $10{\mu}m$ in diameter due to their high dry deposition velocities. The result showed that particles larger than $10{\mu}m$ in diameter dominated atmospheric dry deposition. The modeled fluxes calculated using the measured atmospheric particle size distributions and modeled deposition velocities were compared to measured ones. In general, the measured mass and elemental fluxes agreed well with the modeled ones.

  • PDF