• Title/Summary/Keyword: Dry cleaning shop

Search Result 6, Processing Time 0.021 seconds

VOC Emission Characteristics of Dry Cleaned Wool Scarfs through Small Chamber Test (소형챔버를 이용한 드라이클리닝 모직물 목도리의 휘발성유기화합물 방출 특성)

  • Shin, Jin-ho;Kwon, Seung-mi;Kim, Hyun-soo;Roh, Bang-Sik;Kim, Kwang-rae;Eo, Soo-mi;Jung, Kweon;Lee, Young-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • Objectives: This study was conducted to evaluate the emission of VOCs from clothing that had been dry cleaned. Methods: In order to ensure the same conditions, f100% wool scarves were selected as the fabric type. Four identical tests were conducted on the option of either removing the plastic bags which came from the dry cleaning shop or not. The scarf was located inside a closet or room for one or two days. Small chamber tests were conducted to determine the VOC emission characteristics under the same conditions such as temperature, humidity, loading factor, and air exchange rates. Air from the chamber for VOCs was sampled by Tenax TA tube and analyzed by thermal desorption and GC/MSD. Results: Assuming that test represented dry cleaning and consumer's conditions well enough, we can conclude that immediate emissions after the dry cleaning of the scarfs caused elevated levels of TVOC, five VOCs (benzene, toluene, ethylbenzene, xylene, stylene), and decane group compounds. Conclusions: By removing the plastic bags which came from the dry cleaning shop or not, the storage conditions of dry cleaned scarfs by consumers during the storage time periods (one to three days) would be significant for reducing VOC emissions.

An Evaluation of Exposure to Petroleum Based Dry Cleaning Solvent Used in Commercial Dry Cleaning Shops (석유계 솔벤트를 사용하는 세탁소 작업자의 노출평가)

  • Jeong, Jee Yeon;Yi, Gwang Yong;Lee, Byung kyu;Lee, Naroo;Kim, Bong Yeon;Kim, Kwang Jong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 2005
  • In previous report, we presented that petroleum based solvents used in dry cleaning shop was almost similar to stoddard solvent defined by ACGIH and NIOSH, and the occupational exposure standard of stoddard solvent could be used in total exposure assessment of those solvents. The specific aim of the this study was to evaluate of the solvent exposure used in commercial dry cleaning shops by using occupational exposure standard of stoddard solvent. We conducted first survey of 8 self-employed dry cleaning shops and 5 factory type dry cleaning shops from July to August, and second survey of the same shops from October to November in 2002. The exposure concentration to the solvent during loading and unloading activity of vented dry cleaning machine was 489.2ppm(GM), 270.3ppm(GM), respectively, which was almost excursion limit(500ppm) of ACGIH, and exceed the ceiling limit(312ppm) of NIOSH. The time-weighted average (TWA) worker exposure to the solvent was 21.3ppm(GM) at self-employed shops, 20.7ppm(GM) at factory type shops on first survey, and 31.1ppm(GM), 33.7ppm(GM), respectively on second survey. The TWA exposure concentration of workers with spotting and cleaning machine operating job was 25.4ppm(GM), which was 2.9 times higher than the TWA exposure concentration, 8.8ppm(GM) of press workers. All TWA exposure concentrations was lower than OEL(100ppm) of stoddard solvent. We found that the most heavy exposure process at dry cleaning was loading, unloading process, and the vent of dry cleaning machine was the main emission source for workers exposure to petroleum based solvent.

An Experimental Study on Explosion Hazard of Dry Cleaning Solvent Recovery Machine in Laundry (세탁소 유기용제 회수건조기의 폭발 위험성에 관한 실험적 연구)

  • Choi, Jung-Min;Son, Bong-Se;Kim, Dong-Suk
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • This study analyzes the explosion hazard of dry cleaning solvent recovery machine in laundry shop in two aspects, i.e. combustible and ignition source, and determines the explosive conditions of this machine by conducting mockup explosion tests repeatedly, varying conditions and using real dry cleaning solvent recovery machines. As to combustibles, two kinds of combustibles used widely in Korea have been selected and tested. The flash points, LEL's, and saturation vapor pressures of those combustibles have been measured, and their explosion specific curves have been drawn, based on the results of the measurements, so that the explosion risks of those materials may be determined, depending on the temperatures. Potential voltages generated from materials for laundry and foreign materials of metals have been assumed to be the ignition sources in this application, and their potential voltages have been measured, depending on temperature, humidity, and antistatic agent, by using real materials for laundry and a potential voltage measuring device. Tests have been conducted, varying the quantities, concentrations, and operating temperatures of materials for laundry. As a result, explosions have not been generated with potential voltages of materials for laundry, but explosions have been observed when applying artificial spark energy of 2.0 mJ.

Generating Characteristics of VOCs in a Commercial Laundry Shop and the Effects on the Health of Workers (소규모 세탁소의 휘발성유기화합물 발생 특성과 종사자의 건강에 미치는 영향)

  • Park, Ok-Hyun;Lee, Kyoung-Seok;Min, Kyoung-Woo;Cho, Gwang-woon;Yoon, Kwan-Ju;Jeong, Won-Sam;Cho, Young-Gwan;Kim, Eun-Sun;Yang, Jin-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the generating characteristics of VOCs and the exposure effect to chemicals among laundry workers and to identify the current status of occupational safety and health through health check-ups. Methods: During the six-month period from April to September 2015, this study quantitatively measured seven VOCs in ten laundries and carried out health examinations on 35 workers. Results: Comparing the monitoring results for the ten laundries, they were classified into three groups by ventilation system, dry-cleaning and size of shop. The average concentration of toluene, chlorobenzene, xylene, ethylbenzene, benzene, styrene and TCE were 23.9, 15.6, 5.5, 2.8, 0.9, 0.3 and $1.3{\mu}g/m^3$, respectively. During dry-cleaning, VOC concentrations were 1.3-8.9 times higher than usual. On the other hand, at night the concentrations of toluene, chlorobenzene, xylene, ethylbenzene, benzene, styrene and TCE were 64.3, 41.5, 12.2, 6.3, 1.1, 1.2 and $6.6{\mu}g/m^3$, respectively. The health checkup results for the 35 workers showed that 13 workers were diagnosed as normal, while 22 workers were diagnosed as requiring continuous monitoring or re-checkup of liver and hematogenous functions. Conclusions: Although the results of exposure evaluation to VOCs did not exceed reference value and items had a low correlation with health checkup items, it is necessary to improve indoor air quality due to VOC volatilization from clothes.

Measurement of VOCs Concentrations at Jeonju Industrial Area and Emission Characteristics (전주공단지역의 주요VOCs 배출농도 측정 및 배출원별 특성 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2007
  • It will be necessary to make proper management plans to preserve the air quality in good level for the public. In order to make these plans, source information and detail emission inventories of the city and near industrial areas should be given. However, lack of the source measurements data makes us more difficult to complete the source inventory. VOC source Inventory could be utilized for the feasibility study to estimate the contribution of VOC sources presenting to the receptor such as residential area. It may give policy maker an idea how to control the air quality, and improve their social environment in the area. This study shows data that measured VOCs concentrations from the local industrial areas in Jeonju during from May 2005 to January 2006. The samples were collected from the near sources in 7 major factories in the industrial park as well as 5 general sources in near city Jeonju area to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; chemical, food, paper, wood, metal, non-metal (glass), and painting (coating) industries. The 5 general sources are sampled from tunnel, gasoline gas station, dry cleaning shop, printing (copy) shop, and road pavement working place in urban area. To understand the near source effect at receptor, samples from the 2 receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected and analyzed for the comparison to source concentration. The mass contributions of the speciated VOC to total mass of VOCs measured from the different sources and ambient (2 receptors) were presented and discussed.

VOCs Emission Characteristics and Mass Contribution Analysis at Wanju Industrial Area (완주지역의 VOCs 배출특성에 따른 공단지역과 일반지역의 기여도 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.562-573
    • /
    • 2008
  • Concentrations of volatile organic compounds (VOCs) measured from the local industrial sources in Wanju industrial complex during June $2007{\sim}January$ 2008. The samples were collected from the primary sources (6 emission points) in 4 major factories in Wanju industrial complex as well as two general sources in Wanju County to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; fabricated metal manufacture, motor vehicle manufacture, rubber and plastic manufacture, and chemical manufacture factories. Two general source samples were collected from gasoline gas station and dry cleaning shop in urban area. In order to understand the near source influence at receptor, samples from the two receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected with sample canister, and analyzed by using GC/MSD. The concentrations from different sources were compared and discussed. The mass contributions of the speciated VOCs to total VOCs measured from industrial sources and ambient ai r at two receptors were presented and discussed.