• 제목/요약/키워드: Dry Friction

검색결과 356건 처리시간 0.027초

왁스(wax) 함침형 나일론 6의 합성과 그의 기계적 성질에 관한 연구 (A Study on Synthesis and Mechanical Properties of Wax-Impregnated Nylon 6)

  • 강석춘;정대원
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.268-277
    • /
    • 1999
  • In order to make an advanced dry-friction engineering material, wax-impregnated nylons were synthesized by anionic polymerization of $\varepsilon$-caprolactam in the presence of apraffin wax. DNX-125S, which has lowest melting point among four different kinds of waxs investigated, showed excellent miscibiility with $\varepsilon$-carprolactam and no effect on the polymerization reaction. Five different kinds of wax-impregnated nylons from of DNW-125S content 0% to 8% were synthesized and tested. Among the samples, wax-free nylon has the highest yield and tensile strength and hardness, while the specimen with2% wax has the largest elongationi and energy absorption to break. The wax-impregnated nylon with a wax content 6% showdd the smallest friction coefficient under slow sliding speed and low load. Bus as the sliding speeds were increased to high, thespcieimen with 8% wax has better friction property.

  • PDF

탈선 후 화물열차의 겹판스프링 동적특성 연구 (A Study of Dynamic Characteristic of the Leaf Spring for Freight Wagon After the Derailment)

  • 이응신;이장무
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.49-54
    • /
    • 2004
  • Particularly derailing freight wagon, which are loaded with dangerous chemicals, has large damages on humans and environment. In this paper the dynamic characteristic of the laminated leaf spring under extreme situation, for example derailment, is examined. The leaf spring has a static hysteresis. Not only the friction value, but also the spring rate are influenced by this hysteresis characteristic. Because of the static hysteresis of the leaf spring the spring rate must be used in normal operation depending upon the loading and the kind of the excitation with the up to 10-fold value of the static spring rate. Some characteristics of the leaf spring can be treated like well-known viscous damping, but fer special situation (preload and/or excitation) particular calculation are necessary.

벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성 (Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites)

  • 장범택;이승훈
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.

자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성 (The Characteristics of Friction and Wear for Automative Leaf Spring Materials)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.118-126
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9(leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X-ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035m/s(50rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

  • PDF

고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구 (A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel)

  • 강경모;신동갑;박영훈;김세웅;김대은
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Effects of dry density and water content on compressibility and shear strength of loess

  • Guo, Yexia;Ni, Wankui;Liu, Haisong
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.419-430
    • /
    • 2021
  • Investigation on the compressibility and shear strength of compacted loess is of great importance for the design and operation of engineering infrastructures in filling area. In this study, the mechanical behaviors of Yan'an compacted loess are investigated at various dry densities and water contents by conducting one dimensional compression and direct shear tests. And the elastic compressibility, plastic compressibility, yield stress and strength are obtained from the experiments. Results show that when water content increases, plastic compressibility parameter increases, but yield stress decreases. However, the increase of dry density leads to a decrease in plastic compressibility parameter but an increase in yield stress. In addition, elastic compressibility parameter is found to be a constant which is irrelevant to water content and dry density. As for strength, cohesion and internal friction angle is directly proportional to dry density, but inversely proportional to water content. Moreover, the mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) tests were also performed to observe the pore size distribution and microstructure of the specimens. Finally, by using results of MIP and SEM tests, the compressibility and strength behaviours of Yan'an compacted loess are explained from the perspective of pore-size distribution and microstructure.

흙의 다짐에 관한 연구(I) (Study on the Soil Compaction)

  • 강문묵
    • 한국농공학회지
    • /
    • 제11권4호
    • /
    • pp.1783-1790
    • /
    • 1969
  • It is one of the most economical method of soil stabilization works to compact soil, which increases soil density artificially. Compaction effort is to lessen void of soils, and consequently its aim is to enlarge friction and cohesion force, and reduce permeability of soil. Factors in compaction effort are moisture content, grain size, grain size distribution, physical properties, compaction method and temperature of soils etc. The results obtained in this study on the effects that grain size, gradation and physical properties influence upon compaction effort for 20 samples under the constant compaction method, are summarized as follows: 1. The bigger the maximum dry density is, the smaller the optimum moisture content is, on the other hand, the smaller the maximum dry densityis, the bigger the optimum moisture content is, ingeneral. 2. The coarser the grain size is, the bigger the maximum dry density is, and the optimum moisture content becomes small, and dry density-moisture content curve has the sharp peak, generally. Also, the finer the grain size is the smaller the maximum dry density is, and the optimum moisture content shows the big value, and dry density-moisture content curve has the dull peak. 3. The maximum dry density shows the biggest value on the sample to be about 15% of particles finer than No. 200 sieve. The more the percent passing of No. 10 sieve increase, the smaller the maximum dry density is. Soils which have uniformity coefficient less than 5 in particles larger than 0.074mm hardly show dry density-moisture content curve. 4. There is a relation which is ramax=2.3948-0.0376 Wopt between the maximum dry density and the optimum moisture content, namely, the maximum dry density is increased in proportion to decrease of the optimum moisture content. 5. There are relations to be the straight lines which the maximum dry density decrease, on the other hand, the optimum moisture content increase in accordance with enlargement of Atterberg Limit(LL, PL, PL) in compacted soils.

  • PDF

경계윤활 및 무윤활 상태에서 선접촉을 하는 세라믹과 강의 마찰과 마멸 특성 (Friction and Wear of Ceramic-Steel Pairs in Boundary-Lubricated and Unlubricated Line-Contact Sliding)

  • 이영제;김영호;장선태
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.12-25
    • /
    • 1996
  • The friction and wear behaviors of ceramics against steels with lubricants were investigated and compared with those observed in air. Lubrications wbre done by a water and a commercial engine oil as received. The investigated ceramics were $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$. Steels with 0.2 wt.% C were heat treated to obtain tempered structure. A cylinder-on-plate tribometer with rotated sliding motion was used to carry out the experiments. In the experiments reported here, the ranges of different testing speeds and loads were used. It was found that the friction and wear characteristics of tested pairs were significantly influenced by environments. In water and oil environments the wear of ceramics was reduced from 10$^{-6}$ g/s down to 10$^{-8}$ g/s in dry sliding at the same values of the frictional power which are the products of the friction coefficient, the load and the sliding speed. SiC showed excellent wear resistant behavior in water sliding, which was the lowest among tested ceramics, but it was, very poor in oils. In case of $Si_{3}N_{4}$, the wear rates were very low under oil environment, but the highest in water. The wear rates of $Al_{2}O_{3}$ were very low in both lubricating conditions at low values of the frictional power, but high at high values of the frictional power.

하이브리드 코팅시스템에 의해 제조된 Ti-Si-N 코팅막의 상대재에 대한 마모거동 연구 (Tribological Behaviors Against Counterpart Materials of Ti-Si-N Coating Layers Prepared by a Hybrid Coating System)

  • 박옥남;박종현;윤석영;권식철;김광호
    • 한국표면공학회지
    • /
    • 제36권2호
    • /
    • pp.116-121
    • /
    • 2003
  • Ti-Si-N coating layers were deposited onto WC-Co substrates by a hybrid system of arc ion plating (AIP) and sputtering techniques. The tribological behaviors of Ti-Si-N coating layers with various Si contents were investigated by the dry sliding wear experiments, which were conducted at three different sliding speeds, 0.1, 0.3, 0.5 m/s, against the steel and alumina balls. In the case of steel ball, the average friction coefficient slightly decreased with increasing the sliding speed regardless of Si content due to adhesive wear behavior between coating layer and steel ball. At constant sliding speed, the average friction coefficient decreased with increase of Si content. On the contrary, in the case of alumina ball, the average friction coefficient increased with increasing the sliding speed regardless of Si content, indicating that the abrasive wear behavior was more dominant when the coating layers slide against alumina ball. Through these experimental results, it was found that the tribological behaviors of Ti-Si-N coating layers were effected by factors such as Si content, sliding speed, and kinds of counterpart materials rather than the hardness of coating layer.

사다리꼴 형상 그루빙의 공항 활주로 적용성 평가 연구 (A Study on Evaluating the Applicability of Trapezoidal-shaped Grooves to Airport Runways)

  • 조남현;김동철;피승우;신중하
    • 한국항공운항학회지
    • /
    • 제29권4호
    • /
    • pp.78-87
    • /
    • 2021
  • This study is to evaluate the applicability and performance of trapezoidal-shaped grooves on domestic airport runways. For this, the constructability, drainage performance, and friction resistance characteristics of trapezoidal-shaped grooves compared to square-shaped grooves were evaluated through test construction on pavement at Incheon Airport. As a result of the test construction, the trapezoidal-shaped grooves satisfies the required geometry standards and tolerance, and secured a macrotexture that was 25% improved compared to the square-shaped grooves. It was confirmed that trapezoid-shaped grooves secured drainage performance of more than 7-9%, and surface friction performance improved compared to existing grooves when the surface of the pavement was wet as the test speed increased in the dry state. In addition, after trapezoidal-shaped grooves was installed on the RWY 16R/34L of Incheon Airport, the friction coefficient was 0.84, which satisfies the design level of the new runway surface of 0.82 at the test speed.