• 제목/요약/키워드: Drug storage

검색결과 204건 처리시간 0.023초

염산 프로프라놀롤-고체 분산계-폴리비닐알코올 하이드로겔 중공좌제로부터의 약물방출 (Controlled Release of Propranolol Hydrochloride(PPH) from PPH-Solid Dispersion System-Polyvinyl Alcohol Hydrogel Hollow Type Suppository)

  • 정진훈;이정연;구영순
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권4호
    • /
    • pp.299-308
    • /
    • 1996
  • In order to develop the controlled release of a drug from the suppsitories, in vitro drug release and in vivo absorption in rabbits were investigated. Various suppository forms with hollow cavities, into which drugs in the form of fine powder or solid dispersion system(SDS) could be placed, were utilized. The polyvinyl alcohol(PVA) hydrogel as a base, and propranolol HCl(PPH) as a model drug were employed. In vitro drug dissolution studies showed that the dissolved amounts(%) of PPH from PPH-methylcellulose(MC)-SDS and PPH-ethylcellulose(EC)-SDS reached 100% and 63% in 4.5-hours, respectively. In the relative strength test for PVA hydrogel, PVA hydrogel became harder and more rigid when the number of freezing-thawing cycles and the ratio of PVA 2000 were increased. In vitro drug release profile revealed that the release rate(%) of PPH from PPH-EC-SDS and PPH-MC-SDS hollow type suppositories were sustained. The release amount(%) of PPH from PPH-EC-SDS hollow type suppositories was not affected by storage time, but since the use of hydrophilic MC made PPH diffuse into the hydrogel after it absorbed the water of base, the various release patterns were appeared as the storage time went by. In vivo absorption experiments with rabbits showed that PPH-EC-SDS(PPH : EC=1:3) hollow type suppository delayed the absorption of PPH, significantly. The $C_{max}$, $AUC_{0{\rightarrow}8}$ and MRT of PPH powder hollow type suppository were $196.37{\pm}5.63\;ng/ml$, 1105.26 ng/ml/min and 8.66 min, respectively. The $C_{max}$, $AUC_{0{\rightarrow}8}$ and MRT of PPH-EC-SDS(PPH : EC=1:3) were $91.30{\pm]14.14\;ng/ml$, 554.69 ng/ml/min, 235.99 min, respectively.

  • PDF

온도와 시간을 주요 변수로한 훈제연어에서의 Listeria monocytogenes 성장예측모델 (Predictive mathematical model for the growth kinetics of Listeria monocytogenes on smoked salmon)

  • 조준일;이순호;임지수;곽효선;황인규
    • 한국식품위생안전성학회지
    • /
    • 제26권2호
    • /
    • pp.120-124
    • /
    • 2011
  • 훈제연어의 L. monocytogenes에 대한 식중독 안전관리 방안 마련 및 위해평가 수행 등을 위하여 성장예측모텔을 개발하였다. 미생물 성장예측모델 개발 방법은 대상 식품 및 환경 조건에 따라 다양하며 통계적으로 유용한 모델을 사용하여야 하기에 본 연구에서는 미생물 성장예측모델 개발에 널리 사용되어 그 적용성이 검토된 Gompertz model과 Polynomial model equation을 이용하여 훈제연어의 L. monocytogenes 최대성장속도(SGR) 및 유도기(LT)에 관한 예측모텔을 개발하였다. 개발된 모델의 적합성 평가를 위해 $B_f$$A_f$ factor를 산출하였고 최대성장속도(SGR)의 경우 0.98, 1.06, 유도기(LT)의 경우 1.60, 1.63으로 나타나 유도기의 적합성이 최대성장속도에 비하여 떨어지는 것으로 확인되었다. 본 연구에서 개발된 훈제연어에서의 L. monocytogenes 성장속도에 관한 모텔은, 수산업, 특히 훈제연어 생산, 가공, 보관 및 판매업에 다양한 방면으로 활용 가능할 것으로 판단되며, 더욱 정확한 예측모텔 개발을 위해서는 다양한 변수에 따른 미생물의 성장패턴 변화 등에 관한 연구가 추가적으로 시행되어야 할 것으로 생각되어 진다.

Hydrophilic Albumin Microspheres as Cytarabine Carriers

  • Kim, Chong-Kook;Chung, Myung-Hoa;Oh, Yu-Kyoung;Lah, Woon-Lyong
    • Archives of Pharmacal Research
    • /
    • 제16권2호
    • /
    • pp.123-128
    • /
    • 1993
  • The surface of cyarabine-entrapped albumin microspheres, the surface modified albumin microspheres hsowed remakably incrased hydrophilicity, good dispersability in aqueous medium and reduced aggregation during storage which met the requirements of injectable drug carriers in acqueous vehicle. In vitro cytarabine release from hydrophilic albumin microspheres (HAM) was a function of the cytarabine to albumin ratio, whereas no significant difference in the releasing capacity was obnserved between surface modified HAM within the small size range$(2\;to\;5\mu{m)}$ studied. HAM containing 15-23% drug were gradually degraded by protease and continuously released up to 60% of the total entrapped cytarabine for 6h. These results thus suggest that HAM is a suitable cytarabine carrier which may be injected intraveneously with the benefits of a reduced risk of blood embolism induced by aggregates and prolonged cytarabine release.

  • PDF

Drug Polymorphism and its Importance on Drug Development Process

  • Jeong, Seong-Hoon;Youn, Yu-Seok;Shin, Beom-Soo;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.9-17
    • /
    • 2010
  • Polymorphism has been recognized to be a critical issue throughout the drug product development process. Most of solid phase drugs have polymorphism, which has generated a great deal of interest and the field has been evolving rapidly. Preferably, thermodynamically most stable form of a drug substance is selected to obtain consistent bioavailability over its shelf life and various storage conditions. Moreover, it has the lowest potential for conversion from one polymorphic form to another. However, metastable or amorphous forms may be used intentionally to induce faster dissolution rate for rapid drug absorption and higher efficacy. For pharmaceutical industry, polymorphism is one of the key activities in form selection process together with salt selection. This article introduces the main features in the investigation of solid form selection especially polymorphic behavior with thermodynamic backgrounds, physicochemical properties with solubility, dissolution, and mechanical properties, and characterization techniques for proper analysis. The final form can be recommended based on the physicochemical and biopharmaceutical properties and by the processability, scalability and safety considerations. Pharmaceutical scientists especially in charge of formulation need to be well aware of the above issues to assure product quality.

Development and Validation of Predictive Model for Salmonella Growth in Unpasteurized Liquid Eggs

  • Kim, Young-Jo;Moon, Hye-Jin;Lee, Soo-Kyoung;Song, Bo-Ra;Lim, Jong-Soo;Heo, Eun-Jeong;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • 한국축산식품학회지
    • /
    • 제38권3호
    • /
    • pp.442-450
    • /
    • 2018
  • Liquid egg products can be contaminated with Salmonella spp. during processing. A predictive model for the growth of Salmonella spp. in unpasteurized liquid eggs was developed and validated. Liquid whole egg, liquid yolk, and liquid egg white samples were prepared and inoculated with Salmonella mixture (approximately 3 Log CFU/mL) containing five serovars (S. Bareilly, S. Richmond, S. Typhimurium monophasic, S. Enteritidis, and S. Gallinarum). Salmonella growth data at isothermal temperatures (5, 10, 15, 20, 25, 30, 35, and $40^{\circ}C$) was collected by 960 h. The population of Salmonella in liquid whole egg and egg yolk increased at above $10^{\circ}C$, while Salmonella in egg white did not proliferate at all temperature. These results demonstrate that there is a difference in the growth of Salmonella depending on the types of liquid eggs (egg yolk, egg white, liquid whole egg) and storage temperature. To fit the growth data of Salmonella in liquid whole egg and egg yolk, Baranyi model was used as the primary model and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, bias factor ($B_f$, 0.96-0.99) and $r^2$ (0.96-0.99) indicated good fit for both primary and secondary models. In conclusion, it is thought that the growth model can be used usefully to predict Salmonella spp. growth in various types of unpasteurized liquid eggs when those are exposed to various temperature and time conditions during the processing.

Elution profiles of metronidazole from calcium sulfate beads

  • Burasarin Ithisariyanont;Saranya Poapolathep;Amnart Poapolathep;Pareeya Udomkusonsri
    • Journal of Veterinary Science
    • /
    • 제24권6호
    • /
    • pp.74.1-74.15
    • /
    • 2023
  • Background: Antibiotic beads are used to treat local bacterial infections by delivering high drug concentrations to infected tissue. Objectives: This study examined the elution characteristics of metronidazole from metronidazole-calcium sulfate (MCa) and metronidazole-calcium-potassium sulfate (MCaK) beads over 20 days and the antibacterial efficacy of the beads after storage. Methods: The MCa and MCaK beads were prepared by mixing 250 mg of metronidazole and 10 g of calcium sulfate hemihydrate with water and a 3% potassium sulfate solution, respectively. The beads were placed in phosphate-buffered saline for the elution study. The metronidazole eluents were determined using high-performance liquid chromatography. The microstructures were examined by scanning electron microscopy (SEM), and the antimicrobial activity was evaluated by a microbioassay. Results: For the 20-day study, the total amount of metronidazole released was greater in the MCa beads than in the MCaK beads by 6.61 ± 0.48 mg (89.11% ± 3.04%) and 4.65 ± 0.36 mg (73.11% ± 4.38%), respectively. The amounts of eluted drugs from the MCa and MCaK beads were higher than the minimum inhibitory concentration at 0.5 ㎍/mL against anaerobic bacteria at both 20 days and 14 days. SEM showed that calcium crystals on the outer surface had dissolved after elution, and thinner calcium crystals were prominent in the MCaK beads. The MCa and MCaK beads exhibited antibacterial activity after setting, followed by storage at room temperature or 4℃ for 21 days. Conclusions: The MCa beads could release more drug than the MCaK beads, but all eluted metronidazole amounts were effective in controlling bacterial infections. Both metronidazole beads could be stored at ambient temperature or in a refrigerator.

Rheological Behavior of Poloxamer 407 Solution and Effect of Poly(ethylene glycol) on the Gelation

  • Lee, Ka-Young;Cho, Cheong-Weon;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • 제33권1호
    • /
    • pp.15-19
    • /
    • 2003
  • The rheological behavior of poloxamer 407 solution as function of concentration and temperature was evaluated by rotational viscometer. The viscosity of poloxamer 407 solution was increased as the concentration of poloxamer 407 and temperature increased. At $4^{\circ}C$, poloxamer 407 solution showed the Newtonian flow characteristics regardless of concentration. Upon increasing temperature the poloxamer solution changed to the pseudoplastic flow pattern. And at gelation temperature, rheological profiles showed the abrupt increase in viscosity. Gelation temperature was decreased as the concentration of poloxamer 407 increased, while it increased as the concentration of poly(ethylene glycol) 4000 increased. Poly(ethylene glycol) might be expected to reduce the driving force for hydrophobic interaction resulting in slow gelation. From the viscoelastic properties of poloxamer gel system, we obtained the storage and loss modulus depending on the shear stress and frequency. And the sol-gel transition temperature was also obtained from the viscoelastic properties of poloxamer 407 gel.

약물과 PVC Infusion Bag과의 상호작용 (Interactions between Drugs and Polyvinyl Chloride Infusion Bags)

  • 한건;조영화;문동철
    • 약학회지
    • /
    • 제33권4호
    • /
    • pp.211-218
    • /
    • 1989
  • Twenty-six injectable drug products, many of which are administered by i.v. infusion, were studied for loss from aqueous solutions stored in polyvinyl chloride (PVC) infusion bags for various periods of time. The PVC infusion bags were stored in the dark room at room temperature for up to one month. Drugs stored in glass bottle served as controls. The solutions were assayed Spectrophotometrically at regular intervals. The effect of drug concentration and pH on the loss of drug from solution were studied. Octanol-water partition coefficients were used as a guage of lipid solubility of drugs. The elution of di(2-ethylhexyl)phthalate(DEHT) from PVC infusion bags was studied. For most of the drug studied, minimal loss from the aqueous solutions were observed over periods of storage time. Six of the drug products - Thiopental sodium, Hydralazine HCl, Thioridazine HCl, Trifluoperazine 2HCl, Metronidazole, Chlorpromazine HCl - were found to be lost a substantial extent. DEHP was found to be migrating from PVC infusion bags.

  • PDF

Graphene nanosheets encapsulated poorly soluble drugs with an enhanced dissolution rate

  • Shen, Shou-Cang;Ng, Wai Kiong;Letchmanan, Kumaran;Lim, Ron Tau Yee;Tan, Reginald Beng Hee
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.18-25
    • /
    • 2018
  • In this study, graphene oxide(GO) was used as drug carriers to amorphize poorly watersoluble drugs via a co-spray drying process. Two poorly water-soluble drugs, fenofibrate and ibuprofen, were investigated. It was found that the drug molecules could be in the graphene nanosheets in amorphous or nano crystalline forms and thus have a significantly enhanced dissolution rate compared with the counterpart crystalline form. In addition, the dissolution of the amorphous drug enwrapped with the graphene oxide was higher than that of the amorphous drug in activated carbon (AC) even though the AC possessed a larger specific surface area than that of the graphene oxide. The amorphous formulations also remained stable under accelerated storage conditions ($40^{\circ}C$ and 75% relative humidity) for a study period of 14 months. Therefore, graphene oxide could be a potential drug carrier and amorphization agent for poorly water-soluble drugs to enhance their bioavailability.

Reducing Veterinary Drug Residues in Animal Products: A Review

  • Rana, Md Shohel;Lee, Seung Yun;Kang, Hae Jin;Hur, Sun Jin
    • 한국축산식품학회지
    • /
    • 제39권5호
    • /
    • pp.687-703
    • /
    • 2019
  • A survey we conducted suggests that the ingestion of veterinary drug residues in edible animal parts constitutes a potential health hazard for its consumers, including, specifically, the possibility of developing multidrug resistance, carcinogenicity, and disruption of intestinal normal microflora. The survey results indicated that antibiotics, parasitic drugs, anticoccidial, or nonsteroidal anti-inflammatory drugs (NSAIDs) are broadly used, and this use in livestock is associated with the appearance of residues in various animal products such as milk, meat, and eggs. We observed that different cooking procedures, heating temperatures, storage times, fermentation, and pH have the potential to decrease drug residues in animal products. Several studies have reported the use of thermal treatments and sterilization to decrease the quantity of antibiotics such as tetracycline, oxytetracycline, macrolides, and sulfonamides, in animal products. Fermentation treatments also decreased levels of penicillin and pesticides such as dimethoate, malathion, Dichlorodiphenyldichloroethylene, and lindane. pH, known to influence decreases in cloxacillin and oxacillin levels, reportedly enhanced the dissolution of antimicrobial drug residues. Pressure cooking also reduced aldrin, dieldrin, and endosulfan in animal products. Therefore, this review provides updated information on the control of drug residues in animal products, which is of significance to veterinarians, livestock producers, and consumer health.