• Title/Summary/Keyword: Drug metabolizing enzymes

Search Result 80, Processing Time 0.021 seconds

Biotransformation of Theophylline in Cirrhotic Rats Induced by Biliary Obstruction

  • Park, Eun-Jeon;Ko, Geon-Il;Kim, Jae-Baek;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.60-67
    • /
    • 1999
  • The object of this work was to study the pharmacokinetic differences and the cause of these differences in cirrhotic rats induced by biliary obstruction when aminophylline (8 mg/kg as theophylline, i.v.) was administered. The concentrations of theophylline and its major metabolite (1,3-dimethyluric acid) in plasma were determined by HPLC. In addition, formation of 1,3-dimethyluric acid from theophylline in microsomes and the changes in the activity of drug metabolizing enzymes, which are suggested to be involved in theophylline metabolism, were determined. In cirrhotic rats, the systemic clearance of theophylline was reduced to 30% of the control value while AUC (area under the palsma concentration-tie curve) and (t1/2)$\beta$ were increased 1.3 fold and3.5 fold, respectively. The formation of 1,3-dimethyluric acid was decreased to 30% of the control value in microsomes of cirrhotic rat liver. In cirrhotic rat liver, activities of aniline hydroxylase (CYP2E1 related), erythromycin-N-demethylase (CYP3A related), and methoxyresorufin-O-demethylase (CYP1A2 related), which were reported to be related with theophyline metabolism, were decreased to 67%, 53%, and 76% that of normal rat liver, respectively. From the results, it can be concluded that in cirrhotic rats induced by biliary obstruction, the total body clearance of theophylline is markedly reduced and it may be due to decreased activity of drug metabolizing enzymes in liver.

  • PDF

The Effects of Meliae toosendan Fructus on Liver Function (I) -Effects of Each Fractions from Meliae toosendan Fructus on Drug Metabolism Enzyme System and Bile Secretion- (천련자 추출물이 간기능(肝機能)에 미치는 영향(影響)(I) -천련자의 분획이 약물대사효소계 및 담즙분비에 미치는 영향-)

  • Kim, Bu-Saeng;Choi, Jong-Won;Lee, Chung-Kyu
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 1993
  • Meliae toosendan Fructus is the fruit of Melia toosendan $S_{IEB}$. et $Z_{UCC}$. (Meliaceae), which is written in oriental terminology as clearing heat and drying dampness, and also explained using liver, stomach and small intestine for channels entered. Among the five fractions prepared from methanol whole extractive of the herb, the chloroform fraction which suggests the presence of triterpenoid, flavonoid and alkaloid stimulated the activities of drug metabolizing enzymes and bile secretion and lowered the serum transaminase activities of liver damaged by carbon tetrachloride.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Influence of Five Herbal Medicines on Cytochrome P450 3A4 Drug-Metabolizing Enzyme Activity (활혈거어약의 Cytochrome P450 3A4 효소활성에 미치는 영향)

  • Go, Jae-Eon;Hwang, Jin-Woo;Go, Ho-Yeon;Choi, You-Kyung;Park, Jong-Hyung;Ko, Seong-Gyu;Jun, Chan-Yong
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 2008
  • Objectives: The aim of this study was to investigate the influence of five herbal medicines on cytochrome P450 (CYP) 3A4 drug-metabolizing enzymes in human liver microsomes. Methods: By using of human liver microsomes, we extracted Cnidium officinale Makino, Rhus verniciflua Stokes, Prunus persica Batsch, Corydalis remota Fisch, Carthamus tinctorius Linne, which are called Hwalhyulgeoouhyak(活血祛瘀藥). Then they were incubated and measured for relative enzyme activity under incubation conditions compared to ketoconazole, which is known as a representative inhibitor of CYP 3A4. Results: We showed that all of five traditional herbal medicines had no inhibition effect of CYP 3A4 at 10, 20, 30, 40, and 50${\mu}g/m{\ell}$ doses in human liver microsomes, although Rhus verniciflua Stokes (RVS) showed a little inhibition as about 95% enzyme activity of control. However, this result was not enough to prove that RVS has a CYP 3A4 inhibition effect. Moreover, we can't confirm that those rates have significant induction effect on CYP 3A4. Conclusions: The result of this study could support that those herbal medicines are more reliable than chemical drugs, even if this is a basic step to prove that result.

  • PDF

Screening for the 3' UTR Polymorphism of the PXR Gene in South Indian Breast Cancer Patients and its Potential role in Pharmacogenomics

  • Revathidevi, Sundaramoorthy;Sudesh, Ravi;Vaishnavi, Varadharajan;Kaliyanasundaram, Muthukrishnan;MaryHelen, Kilyara George;Sukanya, Ganesan;Munirajan, Arasambattu Kannan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3971-3977
    • /
    • 2016
  • Background: Breast cancer, the commonest cancer among women in the world, ranks top in India with an incidence rate of 1,45,000 new cases and mortality rate of 70,000 women every year. Chemotherapy outcome for breast cancer is hampered due to poor response and irreversible dose-dependent cardiotoxicity which is determined by genetic variations in drug metabolizing enzymes and transporters. Pregnane X receptor (PXR), a member of the nuclear receptor superfamily, induces expression of drug metabolizing enzymes (DMEs) and transporters leading to regulation of xenobiotic metabolism. Materials and Methods: A genomic region spanning PXR 3' UTR was amplified and sequenced using genomic DNA isolated from 96 South Indian breast cancer patients. Genetic variants observed in our study subjects were queried in miRSNP to establish SNPs that alter miRNA binding sites in PXR 3' UTR. In addition, enrichment analysis was carried out to understand the network of miRNAs and PXR in drug metabolism using DIANA miRpath and miRwalk pathway prediction tools. Results: In this study, we identified SNPs rs3732359, rs3732360, rs1054190, rs1054191 and rs6438550 in the PXR 3; UTR region. The SNPs rs3732360, rs1054190 and rs1054191 were located in the binding site of miR-500a-3p, miR-532-3p and miR-374a-3p resulting in the altered PXR level due to the deregulation of post-transcriptional control and this leads to poor treatment response and toxicity. Conclusions: Genetic variants identified in PXR 3' UTR and their effects on PXR levels through post-transcriptional regulation provide a genetic basis for interindividual variability in treatment response and toxicity associated with chemotherapy.

Effects of 3-methylcholanthrene on the Expression of Drug Metabolizing Enzyme Genes in Monkey Brain (원숭이 뇌 약물대사효소 유전자 발현에 미치는 3-methylcholanthrene 영향)

  • 이경원;아사오카;신윤용
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • In order to understand the mechanism of the regulation of drug metabolizing enzyme gene expression, we have studied the induction of CYP1A1 and GSTα, μ, π enzymes in Japanese monkey and rhesus monkey after the treatment with 3-methylcholanthrene (3MC) and di-n- butyl phthalate (DBP) and bisphenol A (BPA). The levels of mRNA were measured_by RT-PCR in brain, intestine and liver. In the case of adult monkey, treatment with 3MC induced CYP1A1 mRNA in brain by 2-fold. The treatment with DBP induced CYP1A1 mRNA. Effects of 3MC and DBP on GST mRNA expression was not clear. But GSTμ was slightly inhibited by the treatment with 3MC and DBP. GSTα was not induced by the treatment with 3MC and DBP in brain. GSTπ was slightly induced by the treatment with 3MC and DBP in brain. In the case of fetus monkey, the basal levels of fetus CYP1A1 mRNA and GSTs mRNA were relatively low compared to adult monkey. As the age of monkey increased, the basal levels of CYP1A1 mRNA were also increased. 3MC induced the expression of CYP1A1 mRNA in liver, whereas it didn't significantly induce CYP1A1 mRNA in brain. The levels of GSTμ and GSTα were not changed by the treatment with 3MC and DBP. GSTπ was slightly induced by the treatment with 3MC and DBP.

  • PDF

Effects of 3-methylcholanthrene on the Expression of Drug Metabolizing Enzyme Genes in Monkey Intestine (원숭이 소장 약물대사효소 유전자 발현에 미치는 3-methylcholanthrene 영향)

  • 이경원;아사오카;신윤용
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • In order to understand the mechanism of the regulation of drug metabolizing enzyme gene expression, we have studied the induction of CYP1A1 and $GST\alpha,$ $\mu,$ $\pi$ enzymes in Japanese monkey and rhesus monkey after the treatment with 3-methylcholanthrene (3MC) and di-n-butyl phthalate (DBP) and bisphenol A (BPA). The levels of mRNA were measured by RT-PCR in brain, intestine and liver. In the case of adult monkey, treatment with 3MC induced CYP1A1 mRNA in intestine by 11-fold. The treatment with DBP induced CYP1A1 mRNA. Effects of 3MC and DBP on GST mRNA expression was not clear. But $GST\mu$ was slightly inhibited by the treatment with 3MC and DBP. $GST\alpha$ was induced in intestine by 1.5-fold. $GST\pi$ was slightly induced by the treatment with 3MC and DBP in intestine. In the case of fetus monkey, the basal levels of fetus CYP1A1 mRNA and GSTs mRNA were relatively low compared to adult monkey. As the age of monkey increased, the basal levels of CYP1A1 mRNA were also increased. 3MC induced the expression of CYP1A1 mRNA didn't significantly induce CYP1A1 mRNA in intestine. The levels of $GST\mu$ and $GST\pi$ were not changed by the treatment with 3MC and DBP. $GST\pi$ was slightly induced by the treatment with 3MC and DBP.

  • PDF

Effects of 3-methylcholanthrene on the Expression of Drug Metabolizing Enzyme Genes in Monkey Liver (원숭이 간 약물대사효소 유전자 발현에 미치는 3-methylcholanthrene 영향)

  • 이경원;아사오카;신윤용
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.73-78
    • /
    • 2004
  • In order to understand the mechanism of the regulation of drug metabolizing enzyme gene expression, we have studied the induction of CYP1A1 and GST$\alpha$, $\mu$, $\pi$ enzymes in Japanese monkey and rhesus monkey after the treatment with 3-methylcholanthrene (3MC) and di-n- butyl phthalate (DBP) and bisphenol A (BPA). The levels of mRNA were measured by RT-PCR in brain, intestine and liver. In the case of adult monkey, treatment with 3MC induced CYP1A1 mRNA in liver by 10-fold. The treatment with DBP induced CYP1A1 mRNA. Effects of 3MC and DBP on GST mRNA expression was not clear. But GST$\mu$ was slightly inhibited by the treatment with 3MC and DBP. GST$\pi$ was not induced by the treatment with 3MC and DBP in liver. GST$\alpha$ was slightly induced by the treatment with 3MC and DBP in liver. In the case of fetus monkey, the basal levels of fetus CYP1A1 mRNA and GSTs mRNA were relatively low compared to adult monkey. As the age of monkey increased, the basal levels of CYP1A1 mRNA were also increased. 3MC induced the expression of CYP1A1 mRNA in liver. The levels of GST$\mu$ and GST$\alpha$ were not changed by the treatment with 3MC and DBP. GST$\pi$ was slightly induced by the treatment with 3MC and DBP.

  • PDF

Nrf2 Knockout Mice that Lack Control of Drug Metabolizing and Antioxidant Enzyme Genes - Animals Highly Sensitive to Xenobiotic Toxicity

  • Enomoto, Akiko;Itoh, Ken;Harada, Takanori;Yamamoto, Masayuki
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.299-304
    • /
    • 2001
  • Xenobiotics and their reactive intermediates bind to cellular macromolecules and/or generate oxidative stress. which provoke deleterious effects on the cell function. Induction of xenobiotic-biotrans-forming enzymes and antioxidant molecules is an important defense mechanism against such insults. A group of genes involved in the defense mechanism. e.g. genes encoding glutathione S-transferases. NAD(P)H: quinone oxidoreductase, UDP-glucuronosyltransferase (UDP-GT) and ${\gamma}$-glutamylcysteine synthetase (GGCS). have a common regulatory sequence, Antioxidant or Electrophile Responsive Element (ARE/EpRE). Recently. Nrf2. discovered as a homologue of erythroid transcription factor p45 NF-E2, was shown to bind ARE/EpRE and induce the expression of these defense genes. Mice that lack Nrf2 show low basal levels of expression and/or impaired induction of these genes. which makes the animals highly sensitive to xenobiotic toxicity. Indeed. we show here that nrf2-deficient mice had a higher mortality than did the wild-type mice when exposed to acetaminophen (APAP). Detailed analyses of APAP hepatotoxicity in the nrf2 knockout mice indicate that a large amount of reactive APAP metabolites was generated in the livers due to the impaired basal expression of two detoxifying enzyme genes, UDP-GT (Ugt1a6) and GGCS. while the cytochrome P450 content was unchanged. Thus. the studies using the nrf2 knockout mice clearly demonstrate significance of the expression of Nrf2-regulated enzymes in protection against xenobiotic toxicity.

  • PDF