• Title/Summary/Keyword: Drug delivery systems

Search Result 248, Processing Time 0.027 seconds

Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids (세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향)

  • Ha, Seongjin;Jin, Wenji;Park, Dae-Hwan
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

Elution of amikacin and vancomycin from a calcium sulfate/chitosan bone scaffold

  • Doty, Heather A.;Courtney, Harry S.;Jennings, Jessica A.;Haggard, Warren O.;Bumgardner, Joel D.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.159-172
    • /
    • 2015
  • Treatment of polymicrobial infected musculoskeletal defects continues to be a challenge in orthopaedics. This research investigated single and dual-delivery of two antibiotics, vancomycin and amikacin, targeting different classes of microorganism from a biodegradable calcium sulfate-chitosan-nHA microsphere composite scaffold. The addition of chitosan-nHA was included to provide additional structure for cellular attachment and as a secondary drug-loading device. All scaffolds exhibited an initial burst of antibiotics, but groups containing chitosan reduced the burst for amikacin at 1hr by 50%, and vancomycin by 14-25% over the first 2 days. Extended elution was present in groups containing chitosan; amikacin was above MIC ($2-4{\mu}g/mL$, Pseudomonas aeruginosa) for 7-42 days and vancomycin was above MIC ($0.5-1{\mu}g/mL$ Staphylococcus aureus) for 42 days. The antibiotic activity of the eluates was tested against S. aureus and P. aeruginosa. The elution from the dual-loaded scaffold was most effective against S. aureus (bacteriostatic 34 days and bactericidal 27 days), compared to vancomycin-loaded scaffolds (bacteriostatic and bactericidal 14 days). The dual- and amikacin-loaded scaffolds were effective against P. aeruginosa, but eluates exhibited very short antibacterial properties; only 24 hours bacteriostatic and 1-5 hours bactericidal activity. For all groups, vancomycin recovery was near 100% whereas the amikacin recovery was 41%. In conclusion, in the presence of chitosan-nHA microspheres, the dual-antibiotic loaded scaffold was able to sustain an extended vancomycin elution longer than individually loaded scaffolds. The composite scaffold shows promise as a dual-drug delivery system for infected orthopaedic wounds and overcomes some deficits of other dual-delivery systems by extending the antibiotic release.

Combination of Curcumin and Paclitaxel-loaded Solid Lipid Nanoparticles to Overcome Multidrug Resistance

  • Li, Rihua;Xu, Wenting;Eun, Jae-Soon;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.381-386
    • /
    • 2011
  • Multi-drug resistance (MDR) has been known as a major hurdle in cancer chemotherapy. One of the most clinically significant causes of MDR was the efflux of anticancer agents mediated by p-glycoprotein (p-gp) over-expressed in MDR cancer cells. To overcome MDR, there have been several strategies such as co-administration with p-gp inhibitors and encapsulation of anticancer drugs into drug delivery systems. In the present study, curcumin was evaluated for its potential as p-gp inhibitor and MDR reversal activity when combined with paclitaxel incorporated into lipid nanoparticles (PTX/LN). Western blot assay showed curcumin did not modulate the level of p-gp expression in MCF-7/ADR which is a MDR variant of human breast cancer cell line, MCF-7, and over-expresses p-gp. However, curcumin inhibited p-gp-mediated efflux of calcein in a dose-dependent manner even though it showed lower activity compared to verapamil, a well-known p-gp inhibitor. Incorporation of paclitaxel into lipid nanoparticles partially recovered the anticancer activity of paclitaxel in MCF-7/ADR. The combined use of curcumin and PTX/LN exhibited further full reversal of MDR, suggesting susceptibility of PTX/LN to the efflux system. In conclusion, combined approach of using p-gp inhibitors and incorporation of the anticancer agents into nano-delivery systems would be an efficient strategy to overcome MDR.

Preparation and Biodegradation of Thermosensitive Chitosan Hydrogel as a Function of pH and Temperature

  • Han, Hee-Dong;Nam, Da-Eun;Seo, Dong-Hoan;Kim, Tae-Woo;Shin, Byung-Cheol;Choi, Ho-Suk
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.507-511
    • /
    • 2004
  • We have developed an injectable thermosensitive hydrogel for local drug delivery to treat cancers clinically. We selected chitosan as a polymer matrix because of its biocompatibility and biodegradability. Glycerol 2-phosphate disodium salt hydrate (${\beta}$-GP) was used to neutralize the chitosan solution to physiological pH. The chitosan solution displayed a sol-gel phase transition in a pH-and temperature-dependent manner and formed an endothermic hydrogel after subcutaneous injection into mouse in the presence of ${\beta}$-GP. Additionally, we evaluated the biodegradation of chitosan hydrogel in mice by measuring the volume of injected chitosan hydrogel after subcutaneous injection. The injected chitosan hydrogel in mice was sected and stained with hematoxylin-eosin reagent for histological observation to confirm biodegradation of the hydrogel by the infiltrated cells. Chitosan hydrogel systems that possess biocompatibility and biodegradability could be promising thermosensitive injectable materials useful as depot systems for local anti-cancer drug delivery.

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.

Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting (나노의학: 나노물질을 이용한 약물전달시스템과 나노입자의 표적화)

  • Youn, Hye-Won;Kang, Keon-Wook;Chung, June-Key;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.5
    • /
    • pp.337-346
    • /
    • 2008
  • Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development.

Inhibition of Intimal Hyperplasia by Perivascular Delivery of Paclitaxel Using Poly(n-butylmethacrylate) or Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Balloon-Injured Rat Carotid Arteries (쥐 경동맥 손상 모델에서 Poly(n-butylmethacrylate) 혹은 Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)를 이용한 Paclitaxel 국소 전달 요법의 신생내막 형성 억제 효과)

  • Kwon, Jin-Sook;Lee, Ho-Yeon;Heo, Shin-Haeng;Park, Rho-Kwan;Shim, Tae-Jin;Kim, Yu-Kyug;Kim, Beom-Soo;Kim, Dong-Woon
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.284-289
    • /
    • 2008
  • Polymer is a critical component of local drug delivery to prevent restenosis. This study tested whether poly(n-butylmethacrylate)(PBMA) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(PHA) was candidates for this purpose. In vitro release of paclitaxel from PBMA and PHA loaded with 10% paclitaxel exhibited a triphasic release profile, with a fast initial and intermediate second phase followed by a slow release phase. Perivascular delivery of paclitaxel using these films inhibited neointimal hyperplasia in balloon-injured rat carotid arteries. The paclitaxel-loaded PBMA or PHA groups showed significant neointimal formation reductions versus the control groups (PBMA vs control: $0.03{\pm}0.02$ vs $0.10{\pm}0.01\;mm^2$, p<0.05; PHA vs control: $0.04{\pm}0.03$ vs $0.09{\pm}0.01\;mm^2$, p<0.05). This study suggests that PBMA and PHA could be good candidate polymers of local drug delivery to prevent restenosis. Perivascular delivery using these films represents a possible approach for prevention of restenosis. These can be candidate polymers for drug eluting stents.

Effect of Cubic Liquid Crystalline Systems on Skin Localization of Oregonin and Hirsutanonol

  • Im, Tae-Jong;Kang, Myung-Joo;Seo, Dong-Woo;Lee, Jae-Hwi
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.226-230
    • /
    • 2008
  • Monoolein-based cubic liquid crystalline systems were formulated for the local delivery of oregonin and hirsutanonol for the treatment of atopic dermatitis. The liquid crystalline phase and its nanodispersion containing drugs were prepared. The skin permeation and deposition properties of the drugs were examined in normal and delipidized rat skin. The proportion of oregonin (%) deposited in normal skin after topical administration of the drugs in the form of aqueous solution, cubic phase or cubic nanodispersions were $1.53\;{\pm}\;0.46$, $3.62\;{\pm}\;0.17$ and $5.13\;{\pm}\;0.73$, and those of hirsutanonol were $2.46\;{\pm}\;0.02$, $5.44\;{\pm}\;0.27$ and $17.28\;{\pm}\;2.19$, respectively. The greater lipophilicity and thus greater skin affinity of hirsutanonol than oregonin contributed the greater amount of skin deposition. The monoolein-based liquid crystalline phases significantly increased the amount of both drugs permeated and deposited. Approximately 3.2, 2.1 and 3.0 times greater amount of oregonin, and 3.4, 2.1 and 2.2 times greater amount of hirsutanonol were deposited in delipidized skin after administration of each drug in the form of aqueous solution, cubic phase and cubic nanodispersions system, respectively, because of lowered barrier function of the delipidized skin. In this study, the effects of drug property, vehicles type and skin condition on skin deposition and permeation properties of drug were examined and concluded that monoolein-based liquid crystalline systems would be a promising formulation for the local delivery of drugs.

Development of Transdermal Delivery Systems Containing Clenbuterol (클렌부테롤 경피흡수제제의 개발)

  • Choi, Han-Gon;Quan, Qi-Zhe;Jung, Si-Young;Rhee, Jong-Dal;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.4
    • /
    • pp.247-252
    • /
    • 2000
  • The advantages of transdermal administration are avoiding hepatic first pass effect, minimizing inter- and intra-patient variation, maintaining steady-state plasma level to provide long-term therapy from a single dose, and allowing a rapid termination of drug input. Clenbuterol, a selective ${\beta}_2-adrenergic$ receptor stimulant, has been introduced as a potent bronchodilator for patients with bronchial asthma, chronic obstructive bronchial disease. For the development of transdermal systems containing clenbuterol, two limiting factors - long lag time and low flux - must be overcome. In this study, we attempted to select optimal formulation for preparation of clenbuterol patch using hairless mouse skin and flow-through diffusion cell. The flux of clenbuterol increased as the percent of clenbuterol dose dependently in the concentration range of 5-15%. Based on this result, we fixed the concentration of clenbuterol as 15%. The effect of various penetration enhancers on percutaneous absorption of clenbuterol through hairless mouse skin was investigated. Labrafil was the most effective enhancer, which increased the permeability of clenbuterol approximately 4-fold compared with the control without penetration enhancer. Optimal enhancer concentration was 3%. The effect of various adhesives on penetration of clenbuterol was also investigated. Among the adhesives studied, MA-31 was the most effective adhesive. Furthermore, the clenbuterol patch composed of 15% clenbuterol, 3% Labrafil and 82% MA-31, which gave most excellent penetration of drug in in vitro penetration study, maintained therapeutic plasma levels in in vivo study using S.D. rats. These studies demonstrated a good feasibility of clenbuterol administration through the intact skin using a transdermal patch, and show a possibility of the development of clenbuterol patches.

  • PDF