• Title/Summary/Keyword: Drug Deposition

Search Result 55, Processing Time 0.017 seconds

Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect

  • Quan He;Weihua Liu;Xiaomei Ma;Hongxiu Li;Weiqi Feng;Xuzhi Lu;Ying Li;Zi Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

Protective Effects of Curcumin on CCl4-Induced Hepatic Fibrosis with High Fat Diet in C57BL/6 Mice (C57BL/6 마우스에서 고지방 식이와 CCl4로 유발한 간섬유증에 미치는 커큐민의 보호효과)

  • Jekal, Seung-Joo;Min, Byung Woon;Park, Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.251-258
    • /
    • 2015
  • Curcumin, a major polyphenolic compound of turmeric, is well known to prevent non-alcoholic steatohepatitis (NASH) related to obesity. The aim of the study was to investigate the effect of curcumin on hepatic fibrosis induced by carbon tetrachloride ($CCl_4$) in obese mice. $CCl_4$ was administrated in mice fed a normal diet (ND) or a high fat diet (HFD) for 7 weeks together with or without curcumin. It was conducted to examine for metabolic profiles, adipocyte size, and liver fibrosis by serum biochemistry, histology and immunohistochemistry. Also, Apoptosis of hepatic cells was determined by the TUNEL method. Treatment with curcumin significantly lowered the body weight, fasting glucose, serum AST and ALT, and decreased the adipocyte size, the number of macrophage and mast cells in adipose tissue, and collagen deposition in liver tissue in the HFD+$CCl_4$ group compared with the findings of the HFD+$CCl_4$ group. In contrast, treatment with curcumin on the ND+$CCl_4$ group did not show a significant difference except the body weight and mast cell number when compared with the ND+$CCl_4$ group. Furthermore, curcumin significantly reduced the number of parenchymal apoptotic cells, whereas it increased the number of non-parenchymal apoptotic cells, especially resembling an activated hepatic stellate cell in the liver. Taken together, this data suggests that curcumin might be an effective antifibrotic drug for the prevention of liver disease progression in obese mice. Thus, the development of curcumin as a therapy for obesity and liver fibrosis is supported.

20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway

  • Chunxue Li ;Yating Zhan ;Rongrong Zhang;Qiqi Tao ;Zhichao Lang ;Jianjian Zheng
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.515-523
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), one of the main components of ginseng, has anti-inflammatory, anti-estrogenic, and anti-tumor activities. It is known that activated hepatic stellate cells (HSCs) are the primary producers of extracellular matrix (ECM) in the liver, and the Wnt/β-catenin pathway participates in the activation of HSCs. We aimed to explore whether PPD inhibits liver fibrosis is associated with the Wnt/β-catenin pathway inactivation. Methods: The anti-fibrotic roles of PPD were examined both in vitro and in vivo. We also examined the levels of Wnt inhibitory factor 1 (WIF1), DNA methyltransferase 1 (DNMT1) and WIF1 methylation. Results: PPD obviously ameliorated liver fibrosis in carbon tetrachloride (CCl4)-treated mice and reduced collagen deposition. PPD also suppressed the activation and proliferation of primary HSCs. Notably, PPD inhibited the Wnt/β-catenin pathway, reduced TCF activity, and increased P-β-catenin and GSK-3β levels. Interestingly, WIF1 was found to mediate the inactivation of the Wnt/β-catenin pathway in PPD-treated HSCs. WIF1 silencing suppressed the inhibitory effects of PPD on HSC activation and also restored α-SMA and type I collagen levels. The downregulation of WIF1 expression was associated with the methylation of its promoter. PPD induced WIF1 demethylation and restored WIF1 expression. Further experiments confirmed that DNMT1 overexpression blocked the effects of PPD on WIF1 expression and demethylation and enhanced HSC activation. Conclusion: PPD up-regulates WIF1 levels and impairs Wnt/β-catenin pathway activation via the downregulation of DNMT1-mediated WIF1 methylation, leading to HSC inactivation. Therefore, PPD may be a promising therapeutic drug for patients with liver fibrosis.

Effect of Reserpine on the Behavioral Defects, Aβ-42 Deposition and NGF Metabolism in Tg2576 Transgenic Mouse Model for Alzheimer's Disease (알츠하이머질환 모델동물인 Tg2576마우스의 행동, Aβ-42 침적, 신경성장인자 대사에 미치는 reserpine의 영향)

  • Go, Jun;Choi, Sun Il;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Koh, Eun Kyoung;Song, Sung Hwa;Sung, Ji Eun;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.812-824
    • /
    • 2013
  • Reserpine, an anti-hypertensive drug, is able to positively modulate several phenotypes associated with $A{\beta}$ toxicity in a Caenorhabditis elegans model of Alzheimer's disease (AD). We investigated into the therapeutic effects of reserpine on mammalian neurodegenerative disorders, and found that significant alteration of the key factors influencing AD was detected in Tg2576 mice after reserpine treatment for 30 days. The aggressive behavior of Tg2576 mice was significantly improved upon reserpine treatment, whereas their social contact was consistently maintained. Furthermore, the levels of $A{\beta}$-42 peptide in the hippocampus of the brain and blood serum were lower in the reserpine-treated group than in the vehicle-treated group. Among g-secretase components, the expression levels of PS-2, Pen-2, and APH-1 were slightly lower in reserpine-treated Tg2576 mice, although a significant change in nicastrin (NCT) expression was not detected. Furthermore, the serum level of nerve growth factor (NGF) increased in reserpine-treated Tg2576 mice compared with vehicle-treated mice. Among down-stream effectors of the NGF receptor TrkA signaling pathway, reserpine treatment induced elevation of TrkA phosphorylation and reduction of ERK phosphorylation. In addition, in the NGF receptor $p75^{NTR}$ signaling pathway, the expression levels of $p75^{NTR}$ and Bcl-2 were enhanced in reserpine-treated Tg2576 mice compared with vehicle-treated mice, whereas the expression level of RhoA declined. Overall, these results suggest that reserpine can help relieve AD pathogenesis in Tg2576 mice through downregulation of $A{\beta}$-42 deposition, alteration of ${\gamma}$-secretase components, and regulation of NGF metabolism.

ATHEROSCLEROSIS, CHOLESTEROL AND EGG - REVIEW -

  • Paik, I.K.;Blair, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-25
    • /
    • 1996
  • The pathogenesis of atherosclerosis can not be summarized as a single process. Lipid infiltration hypothesis and endothelial injury hypothesis have been proposed and investigated. Recent developments show that there are many points of potential interactions between them and that they can actually be regarded as two phases of a single, unifying hypothesis. Among the many risk factors of atherosclerosis, plasma homocysteine and lipoprotein(a) draw a considerable interest because they are independent indicators of atherogenicity. Triglyceride (TG)-rich lipoproteins (chylomicron and VLDL) are not considered to be atherogenic but they are related to the metabolism of HDL cholesterol and indirectly related to coronary heart disease (CHD). LDL can of itself be atherogenic but the oxidative products of this lipoprotein are more detrimental. HDL cholesterol has been considered to be a favorable cholesterol. The so-called 'causalist view' claims that HDL traps excess cholesterol from cellular membranes and transfers it to TG-rich lipoproteins that are subsequently removed by hepatic receptors. In the so-called 'noncausalist view', HDL does not interfere directly with cholesterol deposition in the arterial wall but instead reflects he metabolism of TG-rich lipoproteins and their conversion to atherogenic remnants. Approximately 70-80% of the human population shows an effective feedback control mechanism in cholesterol homeostasis. Type of dietary fat has a significant effect on the lipoprotein cholesterol metabolism and atherosclerosis. Generally, saturated fatty acids elevate and PUFA lower serum cholesterol, whereas MUFA have no specific effect. EPA and DHA inhibit the synthesis of TG, VLDL and LDL, and may have favourable effects on some of the risk factors. Phospholipids, particularly lecithin, have an antiatherosclerotic effect. Essential phospholipids (EPL) may enhance the formation of polyunsaturated cholesteryl ester (CE) which is less sclerotic and more easily dispersed via enhanced hydrolysis of CE in the arterial wall. Also, neutral fecal steroid elimination may be enhanced and cholesterol absorption reduced following EPL treatment. Antioxidants protect lipoproteins from oxidation, and cells from the injury of toxic, oxidized LDL. The rationale for lowering of serum cholesterol is the strong association between elevation of plasma or serum cholesterol and CHD. Cholesterol-lowing, especially LDL cholesterol, to the target level could be achieved using diet and combination of drug therapy. Information on the link between cholesterol and CHD has decreased egg consumption by 16-25%. Some clinical studies have indicated that dietary cholesterol and egg have a significant hypercholesterolemic effect, while others have indicated no effect. These studies differed in the use of purified cholesterol or cholesterol in eggs, in the range of baseline and challenge cholesterol levels, in the quality and quantity of concomitant dietary fat, in the study population demographics and initial serum cholesterol levels, and clinical settings. Cholesterol content of eggs varies to a certain extent depending on the age, breed and diet of hens. However, egg yolk cholesterol level is very resistant to change because of the particular mechanism involved in yolk formation. Egg yolk contains a factor of factors responsible for accelerated cholesterol metabolism and excretion compared with crystalline cholesterol. One of these factors could be egg lecithin. Egg lecithin may not be as effective as soybean lecithin in lowering serum cholesterol level due probably to the differences of fatty acid composition. However, egg lecithin may have positive effects in hypercholesterolemia by increasing serum HDL level and excretion of fecal cholesterol. The association of serum cholesterol with egg consumption has been widely studied. When the basal or control diet contained little or no cholesterol, consumption of 1 or 2 eggs daily increased the concentration of plasma cholesterol, whereas that of the normolipemic persons on a normal diet was not significantly influenced by consuming 2 to 3 eggs daily. At higher levels of egg consumption, the concentration of HDL tends to increase as well as LDL. There exist hyper-and hypo-responders to dietary (egg) cholesterol. Identifying individuals in both categories would be useful from the point of view of nutrition guidelines. Dietary modification of fatty acid composition has been pursued as a viable method of modifying fat composition of eggs and adding value to eggs. In many cases beneficial effects of PUFA enriched eggs have been demonstrated. Generally, consumption of n-3 fatty acids enriched eggs lowered the concentration of plasma TG and total cholesterol compared to the consumption of regular eggs. Due to the highly oxidative nature of PUFA, stability of this fat is essential. The implication of hepatic lipid accumulation which was observed in hens fed on fish oils should be explored. Nutritional manipulations, such as supplementation with iodine, inhibitors of cholesterol biosynthesis, garlic products, amino acids and high fibre ingredients, have met a limited success in lowering egg cholesterol.