• Title/Summary/Keyword: Drucker-Prager

Search Result 91, Processing Time 0.03 seconds

Seismic effects of epicenter distance of earthquake on 3D damage performance of CG dams

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.201-213
    • /
    • 2020
  • Seismic damages that occurred by the effects of epicenter distance of the earthquake are one of the most important problems for the earthquake engineering. In this study, it is aimed to examine the nonlinear seismic behaviors of concrete gravity (CG) dams considering various epicenter distances. For this purpose, Boyabat CG dam that is one of the biggest concrete gravity dams in Turkey is selected as a numerical application. FLAC3D software based on finite difference method is used for modelling and analyzing of the dam. Drucker-Prager nonlinear material model is used for the concrete body and Mohr-Coulomb nonlinear material model is taken into account for the foundation. Special interface elements are used between dam body and foundation to represent interaction condition. Free-field and quiet non-reflecting boundary conditions are utilized for the main surfaces of 3D model. Total 5 various epicenter distances of 1989 Loma Prieta earthquake are considered in 3D earthquake analyses and these distances are 5 km, 11 km, 24 km, 85 km and 93 km, respectively. According to 3D seismic results, x-y-z displacements, principal stresses and shear strain failures of the dam are evaluated in detail. It is clearly seen from this study that the nonlinear seismic behaviors of the CG dams change depending to epicenter distance of the earthquake. Thus, it is clearly recommended in this study that when a CG dam is modelled or analyzed, distance of the earthquake fault to the dam should be strongly examined in detail. Otherwise, earthquake damages can be occurred in the concrete dam body by the effects of seismic loads.

Probabilistic Strength Assessment of Ice Specimen considering Spatial Variation of Material Properties (물성치의 공간분포를 고려한 빙 시험편의 확률론적 강도평가)

  • Kim, Hojoon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.80-87
    • /
    • 2020
  • As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.

Earthquake performance evaluation of three-dimensional roller compacted concrete dams

  • Kartal, Murat Emre;Karabulut, Muhammet
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.167-178
    • /
    • 2018
  • A roller compacted concrete (RCC) dam should be analyzed under seismic ground motions for different conditions such as empty reservoir and full reservoir conditions. This study presents three-dimensional earthquake response and performance of a RCC dam considering materially non-linearity. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The three-dimensional finite element model of Cine RCC dam is obtained using ANSYS software. The Drucker-Prager material model is considered in the materially nonlinear time history analyses for concrete and foundation rock. Furthermore, hydrodynamic effect was investigated in linear and non-linear dynamic analyses. Researchers observe that how the tensile and compressive stresses change by hydrodynamic pressure effect. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. In this study, dam body and foundation are modeled with welded contact. The displacements and principle stress components obtained from the linear and non-linear analyses with and without reservoir water are compared each other. Principle stresses during earthquake were obtained at the most critical point in the upstream face of dam body. Besides, the change of displacements and stresses by crest length were investigated. Moreover demand-capacity ratio criteria were also studied under linear dynamic and nonlinear analysis. Earthquake performance analyses were carried out for different cases and evaluated. According to linear and nonlinear analysis, hydrodynamic water effect is obvious in full reservoir situation. On the other hand, higher tensile stresses were observed in linear analyses and then non-linear analyses were performed and compared with each other.

Dynamic Characteristics of Reinforced concrete axisymmetric shell with shape imperfection (형상불완전을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.151-159
    • /
    • 2000
  • Dynamic loading of structures often causes excursions of stresses will into the inelastic range and the influence of geometry changes on the response is also significant in may cases. In general , the shell structures designed according to quasi-Static analysis may collapse under condition of dynamic loading. Therefore, for a more realistic prediction on the lad carrying capacity of these shell. both material and geometric nonlinear effects should be considered. In this study , the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a Total Lagrangian formulation. the reinforcing bars are modeled by the equivalent steel layer at the location of reinforcements, and Von Mises yield criteria is adopted for the steel layer behavior. Also, Drucker-Prager yield criteria is applied for the behavior of concrete. the shape imperfection of dome is assumed as 'dimple type' which can be expressed Wd1=Wd0(1-(r-a)m)n while the shape imperfection of wall is assumed as sinusoidal curve which is Wwi =Wwo sin(n $\pi$y/l). In numerical test, three cases of shape imperfection of 0.0 -5.0cm(opposite direction to loading ; inner shape imperfection)and 5cm (direction to loading : outward shape imperfection) and thickness of steel layer determined by steel ratio of 0,3, and 5% were analyzed. The effect of shape imperfection and steel ratio and behavior characteristics of perfect shape shell and imperfect shape shell are identified through analysis of above mentioned numerical test. Dynamic behaviors of dome and wall according toe combination of shape imperfection and steel ratio are also discussed in this paper.

  • PDF

Material Model and Thermal Response Analysis of Concrete at Elevated Temperatures (고온에서의 콘크리트 재료모델과 열거동해석)

  • 강석원;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2001
  • A numerical model for the thermal response analysis of concrete structures is suggested. The model includes the stress-strain relationship, constitutive relationship, and multiaxial failure criteria at elevated temperature conditions. Modified Saenz's model was used to describe the stress-strain relationship at high temperatures. Concrete subjected to elevated temperatures undergoes rapid strain increase and dimensional instability. In order to explain those changes in mechanical properties, a constitutive model of concrete subjected to elevated temperature is proposed. The model consists of four strain components; free thermal creep strain, stress-induced (mechanical) strain, thermal creep strain, and transient strain due to moisture effects. The failure model employs modified Drucker-Prager model in order to describe the temperature dependent multiaxial failure criteria. Some numerical analyses are performed and compared with the experimental results to verify the proposed model. According to the comparison, the suggested material model gives reliable analytical results.

Time dependent behavior of piled raft foundation in clayey soil

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Zayadi, Abbas A.O.
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.17-36
    • /
    • 2013
  • Settlement of the piled raft can be estimated even after years of completing the construction of any structure over the foundation. This study is devoted to carry out numerical analysis by the finite element method of the consolidation settlement of piled rafts over clayey soils and detecting the dissipation of excess pore water pressure and its effect on bearing capacity of piled raft foundations. The ABAQUS computer program is used as a finite element tool and the soil is represented by the modified Drucker-Prager/cap model. Five different configurations of pile groups are simulated in the finite element analysis. It was found that the settlement beneath the piled raft foundation resulted from the dissipation of excess pore water pressure considerably affects the final settlement of the foundation, and enough attention should be paid to settlement variation with time. The settlement behavior of unpiled raft shows bowl shaped settlement profile with maximum at the center. The degree of curvature of the raft under vertical load increases with the decrease of the raft thickness. For the same vertical load, the differential settlement of raft of ($10{\times}10m$) size decreases by more than 90% when the raft thickness increased from 0.75 m to 1.5 m. The average load carried by piles depends on the number of piles in the group. The groups of ($2{\times}1$, $3{\times}1$, $2{\times}2$, $3{\times}2$, and $3{\times}3$) piles were found to carry about 24%, 32%, 42%, 58%, and 79% of the total vertical load. The distribution of load between piles becomes more uniform with the increase of raft thickness.

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.