• Title/Summary/Keyword: Drosophila embryo

Search Result 16, Processing Time 0.024 seconds

A Role for buttonhead in the Early Head and Trunk Development in the Beetle Tribolium castaneum

  • Jeon, Haewon;O, Jiyun;Jin, Sil;Lim, Jinsung;Choe, Chong Pyo
    • Development and Reproduction
    • /
    • v.23 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • The head gap gene buttonhead (btd) is required for the patterning of head segments in the early Drosophila embryo. Mutant phenotypes of btd display a gap-like phenotype in which antennal, intercalary, mandibular and the anterior portion of the maxillary segments are eliminated. In agreement with the phenotypes, btd is expressed in a stripe covering the head segments at the blastoderm stage. During the early phase of the germband extension, btd is expressed in stripes with single segmental periodicity, which is required for the formation of the peripheral nervous system. In contrast to the key role of btd in Drosophila embryonic development, it has been suggested that Tribolium ortholog of btd (Tc-btd) is dispensable for embryonic head development. In order for better understanding of the requirement of Tc-btd in the early Tribolium embryo, we re-analyzed the expression patterns and functions of Tc-btd during embryonic segmentation. Tc-btd is expressed in segmental stripes at the stages of blastoderm and germband elongation. Up to 28.3% of embryos in which Tc-btd is knocked down displays the loss of antennal, mandibular and the pregnathal regions in the head, with abdominal segments being disrupted in the trunk. Our findings suggest that Tc-btd is required for the head and trunk development in the early Tribolium embryo.

Expression of rpr, grim, dcp-1, diapl, and diap2 during Drosophila Development (노랑초파리 발생과정에서 rpr, grim, dcp-1, diapl, diap2의 발현)

  • Park, Ji-Gweon;Chung, Ki-Wha;Kim, Se-Jae
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.131-136
    • /
    • 2001
  • The developmental profiles of rpr, grim, dcp-1, diapl, diap2 transcripts, which were involved in programmed cell death, were analyzed using competitive RT-PCR in whole animals during Drosophila development. The fluctuation patterns of transcript levels of the apoptotic initiators(rpr and grim) were similar to those of the ecdysone titer in Drosophila life cycle. The transcript of dcp-1, which is considered as effector caspase, was expressed strong1y at early embryo and female adult stages. However, the transcript levels of anti-apoptotic factors diap1 and diap2, showed the reverse pattern comparing with those of apoptotic factors(rpr and grim). Also, the transcript levels of rpr, diap2 and dcp-1 were quantified in the salivary glands and wing discs dissected from the wandering late third instar larva. The transcript levels of rpr and diap2 were changed reversely each other in both tissues from wandering stage to puparium formation. These results suggest that the expressions of cell death related genes are regulated by the ecdysone signals during normal development.

  • PDF

Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1

  • Yun, Ji-Hye;Lee, Chul-Jin;Jung, Jin-Won;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.583-588
    • /
    • 2012
  • Functional interaction between Drosophila orphan receptor FTZ-F1 (NR5A3) and a segmentation gene product fushi tarazu (FTZ) is crucial for regulating genes related to define the identities of alternate segmental regions in the Drosophila embryo. FTZ binding to the ligand-binding domain (LBD) of FTZ-F1 is of essence in activating its transcription process. We determined solution structures of the cofactor peptide ($FTZ^{PEP}$) derived from FTZ by NMR spectroscopy. The cofactor peptide showed a nascent helical conformation in aqueous solution, however, the helicity was increased in the presence of TFE. Furthermore, $FTZ^{PEP}$ formed ${\alpha}$-helical conformation upon FTZ-F1 binding, which provides a receptor bound structure of $FTZ^{PEP}$. The solution structure of $FTZ^{PEP}$ in the presence of FTZ-F1 displays a long stretch of the ${\alpha}$-helix with a bend in the middle of helix.

P Element-Mediated Transformation with the rosy Gene in Drosophila melanogaster (D. melanogaster에 있어서 P Element를 이용한 rosy 유전자의 형질전환)

  • Kim, Wook;Kidwell, Margaret G.
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.340-347
    • /
    • 1995
  • We have used two kinds of P element constructs, Pc[(ry+)B] and p[(ry+)$\Delta$SX9], for genetic transformation by microinjection of D. melanogaster. Pc[(ry+)B] construct carrying the rosy gene within an autonomous P element was injected into a true M strain caring the ry506. mutation. The source of transposase for microinjection and transformation was provided by a P element helper plasmid designated p-$\Delta$2-3hs$\pi$, which was co-injected with nonautonomous P[(ry+)$\Delta$SX9] construct into same ry506 M strains. A dechorination method was adopted and 35 independent transformed lines were obtained froin 1143 G0 Injected (35/1143). About 20% of the injected embryos eclosed as adults. Among G0 eclosed flies, approximately 40% exhibited eye color that was similar to wild-type (ry+), but about 60% of fertile G0 transformed lines appeared to have no G1 transformants. Therefore it is unlikely that G0 expression requires integration of the rosy transposon into chromosomes. Pc[(ry+)B] and P[(ry+)$\Delta$SX9] constructs were found to be nearly same in the frequency of element-mediated transformation. On the basis of these results, nonautonomous P elements constructs could he used as same effective vectors in P element-mediated transformation for introducing and fixing genes in insect populations.

  • PDF

Copper, Zinc-Superoxide Dismutase (Cu/Zn SOD) Gene During Embryogenesis of Bombyx mori: Molecular Cloning, Characterization and Expression

  • Hong, Sun-Mee;Kang, Seok-Woo;Goo, Tae-Won;Kim, Nam-Soon;Lee, Jin-Sung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • BmCu/Zn SOD was isolated from early embryo of Bombyx mori using microarray analysis. The BmCu/Zn SOD gene was observed during the early embryonic stage with the strongest signal found at the unfertilizaion, fertilization and blastoderm stages. The BmCu/Zn SOD gene encodes a protein of 154 amino acids with a calculated Mr of 15 kDa. The deduced amino acid sequence of BmCu/Zn SOD indicated that the residues that form on the Cu/Zn binding site are conserved and that the sequence is a 60% identity to that of M. domestica. In a phylogenetic tree, Bm SOD was also close to Drosophila SODs rather than other insect SODs. The BmCu/Zn SOD gene exists as a single copy in the genome. Transcripts of BmCu/Zn SOD cDNA were identified by northern blot analysis. The expression of the BmCu/Zn SOD gene was observed weakly in most of larvae, pre-pupae, pupae and adult tissues. Also, the BmCu/Zn SOD gene was observed in early embryonic stage. Although the roles of SODs remains to be further elucidated, the high expression of BmCu/Zn SOD gene at before 24 h post fertilization suggests that this gene is of general importance during early embryogenesis in the Bombyx mod.

Expression analysis of ciliary rootlet coiled coil protein mRNA during Xenopus development

  • Rahman, Md. Mahfujur;Kim, In-Shik;Ahn, Dong-Choon;Cho, Ho-Seong;Kim, Won-Il;Kim, Bumseok;Shin, Gee-Wook;Kwon, Jungkee;Akanda, Rashedunnabi;Park, Byung-Yong
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Ciliary rootlet coiled coil protein (CROCC), the structural component that originates from the basal body at the proximal end of the ciliary rootlet, plays a crucial role in maintaining the cellular integrity of ciliated cells. In the current study, we cloned Xenopus CROCC and performed the expression analysis. The amino acid sequence of Xenopus laevis was related to those of Drosophila, cow, goat, horse, chicken, mouse and human. Reverse transcription polymerase chain reaction analysis revealed that CROCC mRNA encoding a coiled coil protein was present maternally, as well as throughout early development. In situ hybridization indicated that CROCC mRNA occurred in the animal pole of embryo during gastrulation and subsequently in the presumptive neuroectoderm at the end of gastrulation. At tailbud stages, CROCC mRNA expression was localized in the anterior roof plate of the developing brain, pharyngeal epithelium connected to gills, esophagus, olfactory placode, intestine and nephrostomes of the pronephric kidney. Our study suggests that CROCC may be responsible for control of the development of various ciliated organs.