• 제목/요약/키워드: Droplets in Tandem Array

검색결과 2건 처리시간 0.015초

연소실에 분사된 액적 간의 상호작용과 연소현상에 대한 수치적 연구 (A Numerical Study on Interaction and Combustion of Droplets Injected into a Combustor)

  • 국정진;박승호
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.17-26
    • /
    • 1999
  • Vaporization, ignition and combustion of fuel droplets in tandem array are theoretically investigated to understand the droplet interactions in combustors. Including the effects of density variation in gas-phase, internal circulation and transient liquid heating, a numerical studies are performed by changing parameters such as initial droplet temperatures, initial droplet spacings, initial Reynolds numbers, surrounding gas temperatures, and activation energies of fuel vapors. Combustion regime maps classify the droplet combustion phenomena according to the configuration and location of the flame with respect to injection Reynolds numbers and surrounding gas temperatures. In addition, it is shown that the dynamic histories of droplets and ignition delay times are dependent on droplet size ratios and initial spacings of tandem droplets.

  • PDF

입자간의 상호작용으로 인한 입자의 운동 및 증발에 미치는 영향 (Influences on the Droplet Dynamics and Evaporation due to Closely Spaced Droplet Interaction)

  • 이효진
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1770-1779
    • /
    • 1992
  • The present study investigated dynamically and thermally interacting droplets in a closely spaced tandem array. By measuring the velocity and diameter of the droplet traveling along the isothermal vertical plate drag coefficients and vaporization rates of droplets at certain location were obtained. During the experiment initial droplet spacings were less than 5, and initial droplet diameters were ranged between 280 .mu.m and 700 .mu.m Drag coefficients on closely spaced droplets were placed far below the standard drag coefficient, for which it was caused turbulence induced from aforelocating droplets also narrow spaces among droplets restricted heat transfer to droplets from hot gas flow. In addition evaporated vapor entrapted between droplets was major factor in delaying droplet vaporization. With the experimental results the drag coefficient was correlated with respect to Reynolds number for the droplet as follows : $c_{D}$ =2.4/Red.$^{0.37}$