• Title/Summary/Keyword: Droplet flame

Search Result 94, Processing Time 0.021 seconds

Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure

  • Iwahashi, Takeshi;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.

  • PDF

Reignition of Methanol Droplet Flames Under Acoustic Pressure Oscillation (메탄올 액적 화염의 음향파 가진에 의한 재점화)

  • Kim, Hong Jip;Sohn, Chae Hoon;Chung, Suk Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.114-122
    • /
    • 1999
  • Reignition as special cases of acoustic pressure responses of flame are numerically studied by employing methanol droplet flame as a laminar flamelet. Quasi-steady flame responses occur in the range of small amplitude, low frequency oscillation. Reignition phenomena can occur when, by increasing the frequency of large amplitude acoustic pressure, the magnitude of characteristic acoustic time is the same order of that of characteristic reaction time of flames. And more increasing of amplitude of acoustic pressure induces the direct extinction of flame. Flame can sustain its own intensity even under the steady extinction temperature in case of high frequency acoustic oscillation, and this tendency is remarkable with increasing frequency. Reignition regime with respect to amplitude and frequency of acoustic pressure doesn't exist in low frequency($10^2$ Hz, in this study), but broadens with frequency of acoustic pressure.

Effect of Ambient Temperature and Droplet Size of a Single Emulsion Droplet on Auto-ignition and Micro-explosion (단일 유화액적에서의 분위기 온도와 액적크기에 따른 자발화와 미소폭발의 영향)

  • Jeong, In-Cheol;Lee, Kyung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • The characteristics of auto-ignition and combustion process of a single droplet of emulsified fuel suspended in a high-temperature air chamber have been investigated experimentally with various droplet sizes, surrounding temperatures, and water contents. The used fuels was n-Decane and it was emulsified with varied water contents whose maximum is 30%. The high-speed camera has been adopted to measure the ignition delay and flame life time. It was also applied to observe micro-explosion behaviors. The increase of droplet size and chamber temperature cause the decrease of the ignition delay time and flame life-time. As the water contents increases, the ignition delay time increases and the micro-explosion behaviors are strengthened. The starting timings of micro-explosion and fuel puffing are compared for different droplet sizes and the amount of water contents.

Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System (이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구)

  • Lee, Seok Hwan;Kim, Hyunwoo;Do, Hyungrok;Yoh, Jack J.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

Numerical Simulation of Transient Laminar Reacting Flows Around Fuel Droplets (연료액적 주변의 비정상 층류 화염장 해석)

  • You S. W.;Kang S. M.;Kim Y. M.
    • Journal of computational fluids engineering
    • /
    • v.6 no.1
    • /
    • pp.47-55
    • /
    • 2001
  • The transient laminar reacting flows around fuel droplet have been numerically analyzed. The physical models used in this study can account for the variable thermophysical properties and the chemistry is represent by the one-step global reaction model. The present study is focused on the vaporization and ignition characteristics, flame structure including wake flame, transition flame and envelope flame, and interaction between droplets. Special emphasis is given to the triple flame structure and flame stabilization.

  • PDF

An Experimental Study About Interaction of Droplet Array Combustion (액적배열연소의 상호간섭에 관한 실험적 연구)

  • Kim, Heung-Sik;Baek, Seung-Wook;Park, Jun-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1355-1363
    • /
    • 2002
  • An experimental study was conducted to investigate the interaction phenomena of droplet array combustion in ambient environment. The droplet with 1 mm in diameter was supported from an optical fiber and ignited with a hot wire. Combustion lifetimes and burning rate constants were measured for fuel of nheptane according to parameters, which were junction and suspender spacings, and array configuration. Results show that the burning process considerably depends on the initial away configuration. The d$^2$-law is found to be correct when applied to both of the droplets in away and the single droplet. For separation distance of about 5mm, there exists a critical state. So the transition from a merged flame to separated flames occurs and burning velocity is much faster than before. Combustion lifetime of the lower droplet is shorter than that of the upper droplet in the two-dimensional arrays combustion. Burning rate constants of the droplets in arrays are smaller than that of the single droplet, while they become higher as separation distance increases. Combustion lifetimes of the droplets in arrays are longer than that of the single droplet and decrease as separation distance increase. It is concluded that the array configuration and the mergedness of the flame are the most important factors governing multi-droplet combustion.

The Combustion Characteristics of Diesel-Biodiesel Blended Fuel Droplets Using the Modified Image Processing Method According to Flame Instability (화염 불안정성에 따른 개선된 이미지 처리 기법을 활용한 디젤-바이오디젤 혼합 연료 액적의 연소 특성)

  • Choi, Ju Hwan;Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • The objective of this study is to analyze the basic flame behavior characteristics using the single fuel droplet combustion of diesel, palm-based biodiesel, and canola-based biodiesel. The results were compared and analyzed through the post processed image, which was applied the threshold level for removing noise in the raw image. The raw image was taken by a high-speed camera during the entire combustion process. At the same time, the maximum flame length, which was measured by the application code of the MATLAB program, the ignition delay, and the combustion period were compared and analyzed.

Numerical Analysis of Ignition and Flame Propagation in the Air/Fuel Spray Mixture (공기/연료분무 혼합기의 점화 및 화염전파 해석)

  • ;;Kim, Sung-Jun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3352-3359
    • /
    • 1995
  • An Eulerian-Lagrangian method is employed to simulate the ignition process and the flame propagation through the air/fuel spray mixture in a closed constant-volume combustor. The spray mixture is ignited by providing a hot wall at the end of the combustor or by firing the electric spark. The investigated parameters involve the initial droplet size, overall equivalence ratio, initial fuel vapor concentration, distance between the hot wall and the nearest droplet, and the ignition energy. Numerical results clearly show the existence of the optimum spray condition for minimizing the ignition energy and the ignition delay time as well as the critical dependence of ignition upon the distance of the heat source to the nearest droplet.

Evaluation of Combustion Mechanism of Droplet Cluster in Premixed Spray Flame by Simultaneous Time-Series Measurement (동시 시계열 계측에 의한 예혼합 분무화염 내 유적군 연소기구의 평가)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.442-448
    • /
    • 2009
  • To evaluate the combustion mechanism of each droplet cluster downstream of the premixed spray flame, the simultaneous time-series measurements were conducted by using optical measurement system consisting of laser tomography, multi-color integrated Cassegrain receiving optics (MICRO) and phase Doppler anemometer (PDA). Furthermore, the group combustion number of droplet cluster was estimated experimentally, and the combustion mechanism of droplet cluster was examined applying the theoretical analysis. The group combustion number, $G_c$, was experimentally estimated about all droplet cluster verified by planar images, and it was classified into the internal group combustion mode and the external group combustion mode according to the theoretical analysis. It is found that there are cases in which the group combustion number estimated experimentally for droplet cluster agree or disagree with the classification by theoretical analysis. The reason of disagreement is considered due to that the group combustion number was only estimated by the geometrical arrangement of droplets in cluster, and that the actual phenomenon is three-dimensional but the measurement system is two-dimensional.

Measurements of sooting in single droplet combustion under the normal-gravity condition (정상 중력장하의 단일 액적연소에 있어서 매연 농도의 측정)

  • Lee, Gyeong-Uk;Lee, Chang-Eon;O, Su-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • The temporal and spatial distributions of soot volume fractions were measured for single toluene droplet flames as a function of pressure under the normal-gravity condition. In order to characterize the transient nature of the flame and sooting regions, a full-field light extinction and subsequent tomographic inversion technique was used. The reduction in sooting as a function of pressure was assessed by comparison of the maximum soot volume fractions at several vertical positions along the axis above the droplet. The maximum soot volume fraction was reduced by 70% when the pressure was reduced by 60% from 1 atm to 0.4 atm. The reduction in sooting is attributed to variation of the geometric configuration of flame which reduces the system Grashof number as well as only the change in the adiabatic flame temperature as the pressure decreases. The gravimetrically-measured total soot yield was also compared to the optically-measured soot volume fraction to obtain a correlation between the two measurements. As a result, the total soot yield was linearly proportional to the optically-measured maximum soot volume fraction and linearly reduced as the pressure decreased. Accordingly, the non-intrusive full-field light extinction-measurements were able to be calibrated not only to measure soot volume fraction, but to simultaneously evaluate the total soot yield emitted from the toluene droplet flame (which is useful in the practical application).