• 제목/요약/키워드: Droplet combustion

검색결과 214건 처리시간 0.026초

노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석 (Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance)

  • 배강열;정희택;김형범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구 (Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism)

  • 배강열;정희택;김형범
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

산화제 결핍 상태의 프로판 층류 확산화염에서 LIF 이미지와 SiC 필라멘트 부착물의 형태 비교 (Comparison of Morphology of Deposits on SiC Filaments with LIF Image in Propane/Air Laminar Diffusion Flames in an Oxidizer Deficient Environment)

  • 심성훈;유창종;신현동
    • 한국연소학회지
    • /
    • 제7권4호
    • /
    • pp.1-9
    • /
    • 2002
  • The morphology of deposits on $15-{\mu}m$ thin SiC filaments has been investigated with SEM and compared with UV-excited laser induced broadband fluorescences in co-flowing, propane laminar diffusion flames in a reduced oxidizer environment. The homogeneous morphology of droplet-like deposits inner flame zone and the agglomeration of condensed-phase deposits and the transition to soots from grown up droplet-like precursors with approaching the flame surface can be observed in a barely sooting flame. The average size of the mature soots deposited in the luminous flame edge is scarcely dependent on their axial position in a confined flame under reduced oxidizer condition. A double structure of PAH fluorescence is observed in near-extinction flames with further decreasing of oxidizer. A comparison of the PAH fluorescence with the morphologies of deposits indicates that appearance of the "dark" hollow zone is caused by a decreased number density of developed liquid-phase large molecules and the outer weak fluorescence zone is caused by the diffusion of gas-phase small molecules.

  • PDF

석탄-물 슬러리 액적의 증발 및 점화현상 해석 (Ignition and combustion phenomena of a coal-water slurry droplet)

  • 안국영;백승욱;김관태
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.632-640
    • /
    • 1996
  • 석탄슬러리 액적은 석유와 취급의 유사성 때문에 석유 대체에너지로서 중용하게 인식되어지고 있으며, 석유계의 연료와 비슥한 방법으로 분무연소 시키는 것이 가능하여 종래의 중유사용 연소장치를 최소한 개조하여 사용할 수 있다는 이점이 있다. 따라서 석탄슬러리 액적의 연소에 관한 연구가 활발히 진행되고 있으나 혼합되는 연료의 종류 또는 연소 및 열전달기수에 대한 해석 방법이 다양하여 아직 체계화되지 못하고 있으며 논란의 여지도 없다.

메탄을 연료로 하는 이원추진제 로켓엔진의 이론성능특성 분석 (Analysis of the Theoretical Performance Characteristics for Methane-fuel Bipropellant Rocket Engine)

  • 김종현;정훈;김정수
    • 한국추진공학회지
    • /
    • 제18권3호
    • /
    • pp.1-7
    • /
    • 2014
  • 친환경 추진제인 액체메탄을 연료로 사용하는 이원추진제 로켓엔진의 이론성능분석을 통해 엔진의 설계변수를 도출하였다. 엔진의 연소성능 예측을 위해 CEA를 활용한 화학평형해석을 수행하였으며, 추진제 혼합비 및 연소실 내부압력에 따른 연소성능 특성을 고찰하였다. 엔진의 특성길이 도출을 위해 1차원 액적기화모델을 적용하여 성능변수 변화에 따른 추진제의 기화시간을 계산하였으며, 지상연소 이론성능분석을 통해 메탄 이원추진제 로켓엔진의 설계제원을 제시하였다.

준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part I. 주요 구성 모델 검증 (Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part I Key Sub-model Validation)

  • 강정석;복장한;성홍계;권민찬;허준영
    • 한국추진공학회지
    • /
    • 제24권6호
    • /
    • pp.69-77
    • /
    • 2020
  • 액체 핀틀 추력기의 성능해석을 위해 준 일차원 다상 반응유동 해석코드를 개발하였다. 해석코드의 주요모델로서 다상 유동장, 액적의 기화, 다상 연소, 액체 막냉각 등의 모델들을 적용하였다. 액적기화 모델은 Abramzon의 기화모델을 적용하였으며 연소 모델은 flamelet 모델을 적용하였다. 막냉각 효과는 Shine의 모델을 적용하였다. 각 모델을 사용하여 산소-질소의 Sod shock 튜브, n-decane 액적기화, 케로신 다상연소, 막냉각 길이를 계산하여 선행 연구자의 결과와 비교 검증하였다.

가스터빈 연소기내의 고온공기 분무연소 해석 (Spray combustion with high temperature air in a Gas Turbine Combustor)

  • 조상필;김호영;박심수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical study was conducted to determine the effects of high temperature air, including equivalent ratio on flow field, temperature, evaporation, and overall temperature distribution in gas turbine combustor. A sector model of a typical wall jet can combustor, featuring introduction of primary air and dilution air via wall jet, was used in calculations. Flow field and temperature distribution were analyzed. Operating conditions such as inlet temperature and overall equivalent ratio were varied from 373 to 1300 K, and from 0.3 to 0.6, respectively, while any other operating conditions were fixed. The RNG ${\kappa}-{\varepsilon}$ model and eddy breakup model were used for turbulence and combustion model respectively. It was found that the increase with the inlet air temperature, velocity in the combustor is accelerated and evaporation of liquid fuel is not affected in primary zone, high temperature inlet air enhances the evaporation and improves overall temperature distribution factor.

  • PDF

분무특성에 따른 중유연소 수치해석의 결과와 실험과의 비교 (Comparison between heavy oil combustion test and numerical analysis of combustion phenomena subject to changes in injection characteristics)

  • 이승수;김혁주;김종진;최규성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.338-343
    • /
    • 2003
  • Computations were performed to investigate the spray characteristics of the twin fluid nozzle in three stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to estimate mean droplet size, initial velocity and spread factor of the nozzle through comparison between experiments and numerical analyses. Air stage ratio is 2:4:4 by mass, and O2 in exhaust gas is about 4 % by volume. Here, the agreement between the experiment and numerical analyses is evaluated by NOx generation. Spray characteristics will be linearly interpolated between fuel consumption rate l20L/h and 240 L/h.

  • PDF

보염기 형상에 따른 연료액적분포와 연소특성에 관한 실험적 연구 (An Experimental Study on the Drop Distribution and the Combustion Characteristics with different Bluff-body Geometries)

  • 황상호;김덕줄
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.1-8
    • /
    • 2004
  • This work was performed to investigate the distribution of the fuel droplet size around the bluff-body and the combustion characteristics. The geometry of the bluff-body influenced the spray shape and the combustion characteristics. Diameters of the bluff-body in this experiment are 6, 8, and 10 mm and the impingement $angles({\theta})\;are\;30^{\circ},\;60^{\circ},\;and\;90^{\circ}$. The measurement points were at the distances of 20 and 30 mm axially from the nozzle. The SMD and Rosin-Rammler distribution was acquired by image processing technique (PMAS), and the mean temperatures were measured by thermocouple. The results obtained are as follows; In the condition of ${\theta}=60^{\circ}$, the values of SMD are not greatly varied compared to the other conditions. As the impingement angle of bluff-body was increased, the high temperature region was wider along radial direction. When the air-fuel ratio was increased, the CO concentration was decreased.

  • PDF

EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석 (Numerical studies for combustion processes and emissions in the DI diesel engines using EGR)

  • 권영동;이재철;김용모;김세원
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.