• Title/Summary/Keyword: Droplet Velocity

Search Result 347, Processing Time 0.022 seconds

Design Parameters and Experimental Performance Evaluation of 4-bit Digital Multi-heater Microinjector (4-bit 디지털 미소분사기의 설계변수와 토출성능간의 영향분석에 관한 실험적 연구)

  • Kang Tae Goo;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.418-424
    • /
    • 2005
  • We present the design, fabrication and experimental results of 4-bit digital microinjectors, whose ejected droplet volumes are adjusted by the digital operation of a 4-bit microheater array. We design the reference microinjectors as well as its comparative test structures. In the fabrication process, we use a five-mask micromachining process and the total chip size of the fabricated microinjector is $7,640{\mu}m{\times}5,260{\mu}m.$ We measure the ejected droplet volumes and velocities, which are adjusted from $12.1{\pm}1.0~55.6{\pm}14.7pl\;and\;2.3{\pm}0.1~15.7{\pm}0.8m/s.$ respectively, depending on the 15 possible combinations of 4-bit microheater array. We also experimentally characterize the effect of geometric variation including the microheater size, inter-microheater gap, microchannel width and sequential operation of microheater array on the ejected droplet volume and velocity. Among these parameters, we find that the microheater size is the most dominant parameter affected to the ejected droplet volumes and velocities. Thus, the present microinjector has a potential for application to the high-resolution inkjet printers with multiple gray levels or high-precision fluid injectors with variable volume control.

Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera (고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석)

  • Kim, Yong-Jae;Choi, Jae-Yong;Son, Sang-Uk;Kim, Young-Min;Lee, Suk-Han;Byun, Do-Young;Ko, Han-Seo
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

A Numerical Analysis of the Binary Droplet Collision by Using a Level Set Method (레벨셋 방법을 이용한 액적 충돌에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.353-360
    • /
    • 2011
  • The prediction of binary droplet collisions is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter, and drop-size ratio influence the interaction between the droplets. The effect of these parameters results in complicated collision phenomena. Droplet collisions can be classified into four types of interactions: bouncing, coalescence, reflexive separation, and stretching separation. In the present study, the interfacial flow problem of the droplet collision was numerically simulated by using the level set method. 2D axisymmetric simulations on the head-on collisions and 3D simulation on the off-center collisions were performed. The numerical results of droplet behavior after the collision agreed well with the experimental and analytical results. The mixing of the mass of the initial droplets after the collision was also predicted by using different species index of colliding droplets.

A Study of Rivulet Flow on Inclined Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • Kim, Jin-Ho;Kim, Ho-Young;Lee, Jae-Heon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.576-581
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively nonwetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the retraction velocity of a liquid thread exceeds its axial velocity, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curved motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet's curved motion A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

An Experimental Study on the Spray Structure of a Gasoline Engine Injector (가솔린 기관용 인젝터의 분무 구조에 관한 실험적 연구)

  • Cho, B.O.;Lee, C.S.;Im, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.118-130
    • /
    • 1995
  • Fuel spray in a gasoline engine is a significant factor for the decision of engine power, pollutant emission and the design of intake manifold system. Three kinds of fuel which has other physical properties are chosen in this study, and it is observed using an image processing method that the mechanism and structure of free fuel spray with a throttle type gasoline injector, and the detailed characteristics of droplet size and velocity distributions are obtained by macro and micro-scopic measuring method respectively. It is verified that the initial breakup behaviors are depended on We like the result of Reitz's study, and also observed that the spray of octane and solvent with Re of 210~330 and 270~330 respectively are better than ethanol which has relatively high density and viscosity.

  • PDF

An Experimental Study on Structure of Air-assist Spray with Air Entrainment (공기유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, H.C.;Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The effect of air entrainment in twin-fluid spray structure is investigated experimentally by varing the amount of itemizing air. The air entrainment is expected to affect on droplet size and velocity, droplet number density, turbulent kinetic energy and vorticity. PDA(Phase Doppler Anemometer) and PIV(Particle Image Velocimetry) system are used to measure those important factors in analyzing spray structure. The results show that spray structure consists of three distinctive regions ; the atomizing region near nozzle, characterizing strong convective effect, the central core region where droplets are accelerated, and the spray sheath region where droplets are decelerated due to air entrainment. The local air entrainment rate is largest near nozzle, characterizing strong turbulent kinetic energy and vorticity but deceases along axial distance.

  • PDF

A study on the spray characteristics of hydrocarbon-fuels with viscosity variations (점도변화에 따른 탄화수소계 연료의 분무특성에 관한 연구)

  • Lee, Yong-Il;Han, Jae-Seob
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.23-31
    • /
    • 2001
  • An experimental study was carried out to understand the spray characteristics of three kinds(kerosene, heating oil & diesel) of hydrocarbon-fuels. Fuel temperature and injection pressure were main variables in the experiment. Fuel Temperature was changed to obtain various levels of fuel viscosity. Spray angle and spray length were measured by using LVS(Laser Vapor Screen) photographs. 1D PDPA system was used to measure droplet size & droplet velocity. In room temperature, spray characteristics of three kinds of fuels were good, especially in case the fuel injection pressure was more than $6Kgf/cm^2$ It was also found that spray characteristics were poor in case fuel kinematic viscosity was more than 5cSt.

  • PDF

Experimental study on impact and spreading of SiO2 nanoparticle colloidal suspension droplets (SiO2 나노입자 현탁액의 충돌 및 퍼짐에 관한 실험적 연구)

  • Huh, H.K.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.3
    • /
    • pp.12-16
    • /
    • 2013
  • The impact and spreading behaviors of silicon dioxide nanoparticle colloidal suspension droplets were quantitatively visualized using a high-speed imaging system. Millimeter-scale droplets were generated by a syringe pump and a needle. Droplets of different velocity were impacted on a non-porous solid surface. Images were consecutively recorded using a CMOS high-speed camera at 5000 fps (frames per second) for millimeter-scale droplets. Temporal variations of droplet diameter, velocity and maximum spreading diameters were evaluated from the sequential images captured for each experimental condition. Effects of Reynolds number, Weber number, and particle concentration were investigated experimentally.

Spray Characteristics of the Pressure Swirl Injector at Airplane Operating Conditions (항공기 작동조건에 따른 압력식 스월 인젝터의 분무특성 연구)

  • Choi, Chea-Hong;Choi, Seong-Man;Rhee, Dong-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.691-694
    • /
    • 2008
  • Spray characteristics of the APU simplex fuel nozzle are investigated. Four flight conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power are used as spray experimental conditions. Spray visualization was performed by using ND-YAG laser. Droplet size and velocity were measured by using PDPA(Phase Doppler Particle Analyzer) system. From the test result, SMD is 100 ${\mu}$m�� and velocity is 10 m/s at 20,000 ft idle condition. In this condition, flame unstability could be occurred due to the higher drop diameter. Therefore it is necessary to decrease the droplet diameter in the high altitude condition.

  • PDF

An Experimental Study on Structure of Twin-Fluid Spray with Air Entrainment (공기 유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, Hyo-Cheol;Kim, Dong-Il;Oh, Sang-Heun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.925-930
    • /
    • 2000
  • This paper is investigated the entrainment of air into sprays which has significant effects on the combustion efficiency, stability of flame using the air-assisted twin-fluid nozzle in non-burning. The factors which may be expected to affect the entrainment of air by a liquid spray are: Relative velocity of droplet and ambient gas; Drop size and size distribution; Density and other property of the liquid. Here, axial, radial velocity and turbulent kinetic energy of spray droplet was measured with the PIV(Particle Image Velocimetry). Spray characteristics were also visualized using CCD camera. The results indicate that the entrainment rate increases more or less non-linearly with the downstream region.

  • PDF